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Abstract:

A firm owns the investment rights over one undeveloped oilfield with technical uncertainties on the size and quality of the reserve. In addition, the long run expected oil price follows a stochastic process. Expectations drive the valuation of the development option exercise. The modeling of technical uncertainty uses the practical concept of revelation distribution, the distribution of conditional expectations where the conditioning is the information revealed by the investment in information. The paper presents 4 propositions that helps the firm to select the best alternative of investment in information with different learning costs and different benefits in terms of capacity to reduce uncertainty. This technical uncertainty modeling is practical because is necessary to know only the initial uncertainty (prior distribution) and the revelation power, defined as the expected percentage of variance reduction induced by the alternative of investment in information. The model includes a penalty factor for the lack of information, which causes sub-optimal development, and this factor is introduced into the dynamic real options model. After the information revelation, the optimal development decision depends on the project value normalized by the development cost. This normalized threshold is the same for any technical scenario revealed by the new information when the oil price follows a geometric Brownian motion. In addition, there is a time to expiration of the rights for the option to develop. The model outputs are the real options value with and without the technical uncertainty, with and without the information, and the dynamic value of information. 
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1 - Introduction

The two main sources of uncertainties in oilfield development projects are the market uncertainty, represented mainly by the oil prices, and the technical uncertainty about the volume and the quality of the reserve
. For the cases without technical uncertainty, we have a vast literature on traditional real options models, which the choice is reduced between immediate investment and the "wait and see" policy, until to an expiration date for this decision. However, technical uncertainty and learning processes have been frequent issues in the literature of real options in petroleum
. The investment in additional information – before the much higher investment in development of petroleum reserves – is a very important alternative for both the earlier oilfield development and the simple waiting for better market conditions. 

This paper has two practical aims. First, to build a dynamic (considering the factor time) model for the value of additional information, taking into account interactions of different types of uncertainties. Second, the model must allow the comparison and selection of the best alternative for the investment in information (including not investing in information), considering both the revelation power (capacity to reduce uncertainty) and the cost and time to learn for each alternative. 

These goals present complex practical challenges, even more in a dynamic framework considering the time to expiration of the option to develop the oilfield, the time to learn (learning takes time) and the interaction with continuous-time market uncertainties. This paper presents a practical way to simplify this job, keeping a sound theoretical foundation. The paper develops a methodology to model the evolution of the technical uncertainty through four practical propositions based in the theory of conditional expectations
. The alternative with traditional Bayesian methods to model technical uncertainty using the likelihood function
 to access all the possible posterior distributions is much more complex to be inserted into a dynamic real options framework
 or, at least, the computation is much more time-consuming. In addition, the concept of conditional expectation has a natural place in financial engineering computation playing a key role because the price of a derivative is simply an expectation of futures values (see Tavella, 2002, pp. vii, viii, 4).

The use of conditional expectation as basis for decisions has also strong theoretical basis. Imagine a variable with technical uncertainty X and let the new information I be a random variable defined in the same probability space (, , P). We want to estimate X by observing I, using a function g( I ). The most frequent measure of quality of a predictor g(I) is its mean square error defined by MSE(g) = E[X  g( I )]2. The choice of g* that minimizes MSE(g) is exactly the conditional expectation E[X | I ]. This is a very known property used in econometrics, for example see Gallant (1997, pp.64-65) 
. Conditional expectation E[Y|X = x] is also the (best) regression value of Y versus X for X = x. The best regression can be linear but in general is nonlinear
 (see Whittle, 2000, p.89).
The information revelation on technical parameters is modeled in one or more discrete-time points – event-driven process – rather than in continuous-time as adopted in some real options papers
. The reason is that the development plan is revised only if there is new (relevant) technical information, and after the processed information to become knowledge or wisdom about the reserve properties. See Chen & Conover & Kensinger (2001) for an in-depth discussion of a real options model of information gathering, storage and processing. In other words, the new expectation about reserve size and quality revealed by the investment in information is a good (or the main) reason for a development plan revision. Hence, the new expectations (or conditional expectations) for the technical uncertainties are event-driven process
 (the event is the new knowledge generated by the investment in information) rather time-driven process as in the case of market uncertainties
. 

The technical uncertainty is modeled using a conditional expectation approach into a real options framework with the concept of revelation distribution
 (conditional expectation distribution or conditional expectation function). The main contributions are the recognition of the practical value for the revelation distribution, the identification of 4 relevant propositions
 to represent the evolution of technical uncertainty in a learning process and its insertion into a real options model to evaluate investments in information. 

The paper is divided as follow. In the second section is presented the technical uncertainty modeling using the concept of revelation distribution and the first three properties. The third section discusses the payoff function (NPV) for the real options exercise, how the uncertainties are inserted into the model, and the effect of technical uncertainty on the NPV (by using a penalty function for sub-optimal development). The fourth section presents the real options model, including the risk-neutral simulation equation for the oil prices, the normalized threshold curve and how the revelation distribution is placed into the real options simulation. The fifth section presents some case studies with numerical results. The sixth section presents two extensions, the timing of investment in information and the sequential investment in information case using the event-driven martingale property for the revelation distribution. The last section concludes the paper. In the appendix are presented the proofs for the propositions and some conditional expectation properties.
2 - Investment in Information and the Revelation Distribution
This paper assumes that the primary goal or the main benefit of any investment in information is to reduce the uncertainty on one or more parameters. This reduction of uncertainty can be conveniently expressed as the percentage of variance reduction. Eventual other extra benefits from an investment in information – if relevant – can to be quantified in present value and added up. Linked to the variance reduction (as we’ll see better with the Proposition 3) is the capacity of a new information to change our expectation about relevant inputs of a project, and so our investment decisions. The simple example below addresses this point. 

Consider an oilfield with some technical uncertainty about the volume of the reserve (B). First we need to decide about the investment in information by drilling or not an appraisal well. The second decision is about the development investment. Figure 1 shows this learning process revealing three possible scenarios for the reserves volume.
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Figure 1 – Investment in Information, Revealed Scenarios, and Optimal Decisions

After a new information, the manager decision is driven by the new expectation about the parameter value and the uncertainty around this new expectation. These new expectations are conditional to the kind of new information (are conditional expectations). In case of neutral news (the expectation remaining the same, see the figure), the decision would be the same that without the information, namely a production platform with small capacity (a small development investment D). However, there are chances that the new information changes the optimal development decision. In case of good news, a large platform is better in order to take advantage of a larger reserve. In case of bad news the optimal decision could not develop the oilfield. Without information, the small platform decision is sub-optimal in two from three scenarios. In general it is even worse because we have a continuum of conditional expectation scenarios, that is, a distribution of conditional expectations. Hence, with a lack of knowledge on the reserve volume we tend to perform sub-optimal development decisions. Optimization under uncertainty is the source of value for the investment in information. In addition, the evolution of the oil prices can change our decision from non-development to development or from development with a small platform to non-development.

This figure shows that the development investment decision after the information depends of the properties of the distribution of conditional expectations, named here revelation distribution. This denomination
 emphasizes the change of expectations with the revealed new scenario and the learning process or discovery process towards the true value of the variable
. 

This revelation concept has similarities and differences with the famous principle of revelation, from the literature of asymmetric information (or more specifically the theory of mechanism design) and in Bayesian games. Our setting means the revelation of the true value of the technical parameter (true state of the nature of one parameter), whereas the mechanism design concept is related with the true type of one agent  (a direct mechanism designed to be optimal for a player to say the truth).

Let convergent revelation process be defined as a learning process that in the limit converges toward the true value of a parameter. This article is interested only in convergent revelation processes to model technical uncertainty evolution with the investment in information process.

The highest efficiency for one investment in information is when it reduces to zero the variance of the posterior distribution, resulting in a full revelation (reveal the truth on the technical parameter). What are the possible scenarios after this very efficient investment in information? Of course all the scenarios from the previous total uncertainty (prior distribution) are possible. With this reasoning, let us consider the first proposition for the revelation distribution
.

Proposition 1 (Full Revelation): For the full revelation case, the revelation distribution is equal to the prior (unconditional) distribution.

This proposition is trivial and draws directly from the definition of prior distribution. The prior distribution on a single technical parameter represents the total technical uncertainty on that parameter. It represents the probabilities of all possible values that the parameter can assume. In case of full revelation, one value from this distribution will be revealed, and the probability for this value to be revealed must be the same from the prior distribution to preserve the consistency
. 

With the reasonable assumption that the prior distribution has finite mean and variance, Proposition 1 tells that even with infinite quantity of information, the variance of revelation distribution is bounded. This contrasts strongly with some papers (e.g., Cortazar et al, 2001) that model technical uncertainty using Brownian motion, which the variance is unbounded (and grows with the simple passage of time, which is also inadequate - this distribution changes only with new information). 

Hence, for the full revelation case is trivial to obtain the revelation distribution. However, in real life typically we obtain only a partial revelation with the investment in information. The concept of partial revelation is related with the concept of "imperfect information", whereas the concept of full revelation is related with the "perfect information"
 one from decision analysis literature. As in this literature, the value of information with partial revelation cannot exceed the value of information with full revelation (see the equivalent in decision analysis in the book of Pratt & Raiffa & Schlaifer, 1995, p.252). However, in this paper the concept of partial revelation is introduced into a more dynamic framework, putting the revelation distributions into the real options model.

How to proceed in the partial revelation case? Fortunately, the revelation distribution has some nice probabilistic properties that help us to model dynamically the value of information. The expected value and the variance for the revelation distribution are given below. 

Definition: Let X be the variable with technical uncertainty (e.g., the reserve size B), and the investment in information reveals the information I = i. Revelation distribution is defined as the distribution of RX = E[X | I]. The revelation distribution properties such us the mean and variance, are presented as propositions.

Proposition 2: The expected value of the revelation distribution is equal the expected value of the prior (unconditional) distribution (proof: see the appendix)
. For the technical parameter X:

E[RX]  =  E[X]                                                              (1)

Hence, the weighted average of the conditional expected value of X given that I = i being each term RX(i) = E[X | I = i]  weighted by the probability of the event i on which it is conditioned, is simply the original (unconditional) expected value of X, from the prior distribution.

Proposition 3: the variance of the revelation distribution is equal to the expected reduction of variance induced by the new information (proof: see the appendix).

Var[RX]  =  Var[X]  E[Var{X | I }]            
                (2)

This result is not obvious, but it is an outstanding issue that makes the revelation distribution very useful for practical purposes. By knowing only the prior (original) variance and the expected percentage of variance reduction, we can find the variance of revelation distribution. Note that the right side is just the difference between the prior variance (before the information or unconditional) and the expected remaining variance after (posterior) the information. In other words, it is the variance of the prior distribution less the expected variance from the set of possible posterior distributions
. In short, it is the expected variance reduction due to the investment in information.

For the full revelation case (imagine a very efficient investment in information revealing all the uncertainty), the residual (posterior) variance is zero, and hence Var[RX] = Var{X} as required for the consistency between Propositions 1 and 3. 

The above propositions allow a practical way to ask the technical expert in order to get the information necessary to model technical uncertainty in this approach. Only two questions:

· Initial Uncertainty: What is the total uncertainty of a particular parameter (e.g., the reserve volume B)? The specialist answer needs to specify the prior distribution of technical uncertainty, that is, mean, variance, and the class of distribution (Triangular, LogNormal, Uniform, etc.).

· Revelation Power: What is the expected percentage of reduction of technical uncertainty (read variance reduction) with each specific alternative of investment in additional information? 

With these two answers from the experts we can specify the mean and the variance of the revelation distribution (one for each learning alternative), used in our framework for the value of information. The best way to understand the revelation distribution propositions is by using a simple example.

Simple Numerical Illustration of Revelation Distribution

Consider the following stylized oilfield with technical uncertainty on the reserve volume of B (in million of barrels = million bbl) illustrated in the Figure 2.
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Figure 2 - Stylized Oilfield with Technical Uncertainty 

Assume that there are three mutually exclusive alternatives
 of investments in information, besides the alternative zero of not investing in information. The alternative 1 drills one appraisal well in the area b and revel all about that area, but nothing about the remaining areas c and d (partial revelation). The alternative 2 have a higher revelation power because drills two appraisal wells (e.g., in the areas b and c). The alternative 3 have the highest power revelation by drilling three appraisal wells, and in this example this means the condition of full revelation. 

First note that the initial uncertainty (unconditional distribution) also known as the prior distribution, is represented by the following discrete scenarios distribution:

· 100 million bbl with 12.5 % chances;

· 200 million bbl with 37,5 % chances;

· 300 million bbl with 37,5 % chances; and

· 400 million bbl with 12,5 % chances.

Hence, the expected value for the unconditional distribution is E[B] = 250 million bbl and the variance is Var[B] = 7500 (million bbl)2. Let us see what happen with the different investments in information, in both the posterior (or conditional) distributions and the revelation distribution.

The revelation distribution obtained with one alternative is the distribution of expectations after the information revelation for this alternative. What are the new possible scenarios of expectation after the appraisal drilling in the area b (Alternative 1)?

Alternative 1 generate two possible scenarios, because the well b result can be success proving more 100 million bbl (positive revelation with 50% chances) or dry (negative revelation with 50% chances). These two scenarios of new expectations revealed with one appraisal well, form the discrete revelation distribution for Alternative 1. This revelation distribution is a discrete distribution with two scenarios, which are presented below.

E(B|A1 = good news) = 100 + 100 + (0.5 x 100) + (0.5 x 100) = 300 million bbl with 50% chances

E(B|A1 = bad news) = 100 + 0 + (0.5 x 100) + (0.5 x 100) = 200 million bbl with 50% chances

Note that, with the Alternative 1, it is impossible to reach more extreme scenarios of revelation such us 100 million bbl or 400 million bbl. This is because the revelation power of Alternative 1 is not sufficient to change the expectation of the entire reserve so much to reach extreme cases.

Alternative 1 reaches only a partial revelation, so that the uncertainty remains and the posterior distribution B|A1 has variance nonzero. What is the expected variance for the posterior distribution with the Alternative 1?

In case of positive revelation, the posterior distribution is {200 million bbl with 25 % chances; 300 million bbl with 50 % chances; and 400 million bbl with 25 % chances}. For the negative revelation scenario, the other posterior distribution is {100 million bbl with 25% chances; 200 million bbl with 50% chances; and 300 million bbl with 25% chances}.

The reader can calculate that the remaining variance (variance of posterior distribution) in both scenarios of revelation are 5000 (million bbl)2, and so the expected variance of posterior distribution is also 5000 (million bbl)2. So, Alternative 1 reduces the variance of B in 33% (from 7500 to 5000). In this simple example, this is also the searched area in relation to the total area with uncertainty.

Let us check the Propositions 2 and 3. The expected value of the revelation distribution for the Alternative 1 is:

EA1[RB]  =  50% x E(B|A1 = good news)  +  50% x E(B|A1 = bad news) = 250 million bbl

As expected by the Proposition 2. The variance of the revelation distribution for Alternative 1 is:

VarA1[RB]   =   50% x (300  250)2  +  50% x (200  250)2  =  2500 (million bbl)2

As expected by the Proposition 3, the variance of revelation distribution is equal to the expected reduction of variance caused by the investment in information (7500  5000). 

The reader can check the Propositions 2 and 3 for the Alternatives 2 and 3, and the Proposition 1 for Alternative 3 (full revelation). The reduction of variance of Alternative 2 is 66% (from 7500 to 2500), whereas the reduction of variance for Alternative 3 is 100% (from 7500 to zero).

Figure 3 shows the revelation distributions for the three alternatives. Note that, as higher is the revelation power as higher is the variance of revelation distribution. Note also that the revelation distribution for the Alternative 3 (full revelation) is exactly the prior distribution, as required by Proposition 1. In addition, the figure shows that all alternatives the means from the revelation distributions are equal to the original (prior) expected value (250 million bbl).
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Figure 3 - Alternatives of Investment in Information and Revelation Distributions

What is the class (shape) of the revelation distribution in case of partial revelation? In general it depends of the distribution of the outcomes from the new set of information (e.g., for Alternative 1, a discrete distribution with 50% success and 50% for dry well). More precisely (see Goldberger, 1991, p.49), it depends on the joint probability density function (joint pdf) of reserve B with Alternative 1.  

Although texts on conditional expectation are very common, the study of the distribution of conditional expectations (revelation distribution) even when the conditioning is discrete is hard to find. One exception is Lee & Glynn (1999), which uses Monte Carlo methods plus some theorems to estimate this distribution. Of course we can use a more sophisticated setting, but there is the additional cost of complexity. The setting below is more simplified, aimed to practitioners. 

For the limiting case (full revelation), Proposition 1 tells that revelation distribution and the prior distribution are of the same class (in reality are equal). Even the partial revelation distributions having different shapes (look the previous figure to see this), as the variance grows the shapes of these distributions evolve towards the prior distribution shape. For practical simplicity assume that the revelation distribution class is the same of the prior distribution of technical parameter. This is absolutely correct for the full revelation case and a practical simplification for the partial revelation case. If the variances (given by the Proposition 3) are the same, differences in the distribution shapes generally have secondary numerical effects on the real option value. Hence, if we use a triangular distribution for the prior distribution, the revelation distributions will be triangular too. 

Figure 4 illustrates this example and compares the effect of expected variance reduction of the posterior distributions
 over the revelation distribution, for different levels of variance reduction.
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Figure 4 - The Expected Variance Reduction and the Revelation Distributions

If the expected variance reduction with an investment in information is 25%, the picture above shows one from a set of possible posterior distributions
 and the (unique) revelation distribution for this case. Recall that revelation distribution is the distribution of the means of the posterior distributions. The use of revelation distribution signifies working with all posterior distributions in a simpler way. At least, it is much less time-consuming than working with n scenarios of m posterior distributions.

The displayed variances in the Figure 4 are exact for all revelation distributions, but the shapes are only approximations for the partial revelation cases
.

This picture helps to answer the apparent paradox: if the real options value is increasing function of volatility, what is the advantage to reduce the technical uncertainty? Or as asked by Martzoukos & Trigeorgis (2001), why learn? The answer is that in economic analysis of projects (and in finance in general) we work with (conditional) expectations, that is, with the revelation distribution, and not with one particular posterior distribution. As large is the expected reduction of the technical uncertainty as large is the variance of the revelation distribution and hence the real options value. 

In the Figures 3 and 4, if we think the revelation distributions as results of an ex-ante analysis of a sequential investment in information process, we observe that the sequential revelation distributions have the same means. This is a martingale property that will be named Proposition 4 (see item 6.2).

This paper approach for the technical uncertainty modeling is more closely related with the model developed by Pindyck (1993) and discussed in Dixit & Pindyck (1994, pp.345-353). In that model, the total cost of the project K is uncertain and the optimal rate of investment I is zero or k. When investment takes place, there is a revelation of information so that the variance of technical uncertainty is reduced. So, both Pindyck and this paper consider that the variance of the technical uncertainty is reduced with the investment. Both say that, in presence of technical uncertainty only, the value of the technical parameter changes only if the firm is investing (also in opposition to the model of Cortazar et al., 2001, that changes with the simple passage of time). While the revelation distribution variance increases linearly with the expected reduction of variance, in the Pindyck model the instantaneous variance of the variation rate of the technical variable increases linearly with the ratio I/K. There is a maximum when this ratio is one, which is similar to our case of full revelation because the maximum variance of revelation distribution occurs also when the variance of technical uncertainty collapses to zero. In this paper, the investment in information not necessarily reduces the development cost of the project. Most important, here is developed a theory on technical uncertainty modeling, linking prior distribution, expected variance reduction with the investment in information, and the conditional expectation (revelation) distribution. This will be also inserted into a dynamic model, but working with Monte Carlo simulation of stochastic processes and revelation distributions.

This paper concept for the technical uncertainty is also related with the Copeland & Antikarov (2001, chapter 10) concept of technological uncertainty. They wrote: “…those uncertainties do not get resolved smoothly over time as in Brownian motion process. They are resolved when the information becomes available”, that is, event-driven processes not time-driven processes. They also give the intuition of jumps in the expectation with the new information becomes available. They call learning option the option to invest in information in order to reduce the technological uncertainty. However, they didn’t go further in the technical uncertainty modeling as performed in this paper, and they used a discrete-time and discrete-state framework. We will use a continuous-time framework and will allow continuous (revelation) distributions for the technical uncertainty, by using a Monte Carlo simulation (see section 4). But before it is necessary to discuss the development option exercise.

3 - The Payoff for the Exercise of the Option to Develop: the NPV Function 
3.1 - NPV Function for Monte Carlo Simulation and Related Topics

The exercise of the development option provides the project Net Present Value (NPV)
 given by the difference of the value of the developed reserve V with the development cost D.

NPV    =    V    D                                                                (3)

In the oil industry, the value of the developed reserve V is given by the market transactions on developed reserves or, most commonly, by the discounted cash flow (DCF) approach. With the DCF approach, V is the present value of the revenues net of operational costs and taxes, whereas the investment D is the present value of the investment flow
 net of tax benefits. 

The practical challenge in petroleum projects is how to model the NPV function when performing a Monte Carlo simulation of the key factors with technical and economic uncertainties. 

There are at least three alternatives to consider both technical and economic uncertainties into the NPV function. First using a model as simple as possible but considering the main uncertainties, which are parameterized from the DCF model or drawn from a business vision of the project. A simple business model approach will be used in our examples.

The second alternative is by working directly with the cash flows. For example an integral with revenues and costs explicitly written as function of variables with uncertainty
. This can be done also by putting formulas and correlation among cells in the spreadsheet linked to the sources of uncertainties, because the Monte Carlo simulation needs to change every cell in the appropriated way. Although this is possible, the formulas can be complex to link the uncertainties on the reserve size and productivity of wells, complicating the interpretation and with a much higher computational cost than the first alternative. 

The third alternative for a Monte Carlo simulation of the NPV function is by using more complex models and tools in tandem. The technical uncertainties are introduced into the reservoir simulator software, generating the distribution of production profile with its associated values for V and D (and so the NPV = V  D) in the NPV spreadsheet. The problem is that the reservoir simulator is called for every sample used in the Monte Carlo simulation, and the reservoir simulator (that solves a system of partial differential equations) is not fast enough, so that the computation is very slow
.     

The first way is used in this paper for the NPV function simulation. It is necessary to think about the main sources of uncertainties, which have important impact in the NPV. Let us use also the business intuition of market value of a developed reserve.

The developed reserve value V, in both DCF valuation and reserve market valuation, is an increasing function of some important factors: 

· the reserve volume B (expressed in million of barrels of equivalent oil, boe
); 

· the technical quality of this reserve, that is, the fluids quality and the permo-porosity quality of the reservoir, which can be represented by the average normalized productivity index (PI/h) for the wells in this reserve, where h is the reservoir thickness with oil ("net pay");

· the current (expected long-run) oil prices P (US$/bbl); and

· the financial-economic quality of the reserve, which depends of the location, factors like the discount rate (function at least of the basic interest rate, the risk-premium for the E&P business, and the country risk-premium), the country's fiscal regime, and operational costs (e.g., reserves in deepwaters have higher maintenance cost for the wells than shallow-waters reserves).

The adequate (optimal) development investment D is function of the reserve size B (recall the Figure 1 to see this). To keep simple the notation, consider that D(B) is the optimal capacity choice D* for the expected reserve volume conditional to the information E(B| I) available at the decision time t. The coefficients of the function D(B) depend of the reserve location (shallow water x deepwater; near to petroleum industry infrastructure or remote area; etc.) and can be estimate using historical data or estimating the investment cost of production systems for different reserve volumes. Empirical data has been pointing the linear equation with fixed and variable coefficients as a good approximation for the (optimal) capacity choice in function of the (expected) reserve volume
.

                            D(B)  =  fixed cost factor + (variable cost factor . B)                                     (4a)

In the general case, let  be a market stochastic shock that changes the cost D along the time, that is, (t = 0) = 1 and (t > 0) is uncertain and follows a stochastic process. The general equation is:

                 D(B, t)  = (t) . [ fixed cost factor + (variable cost factor . B) ]                                  (4b)

So, in the general case the development cost D is linked with both technical and market factors. In the examples are used the equation 4a for simplicity. But we will see that the method is sufficiently general to include market uncertainty on the variable D.

For a positive
 value of one barrel of developed reserve v, the value of a developed reserve V is an increasing function of B. Let us assume that for oilfield development projects, the NPV is also an increasing function of reserves volume B. The gain of scale with the reserve volume B is a widely known feature for the NPV function in E&P projects. In addition, the value of reserve V is increasing with its qualities in terms of reservoir properties, fluid properties, (low) extraction cost environment, (low) taxes, and so on. It is possible to think these qualities linked with a market value or some estimate using a discounted cash flow. Let us explore further this point.

In order to get a simple equation for the NPV, think about the market value of one barrel of reserve v (that is, v is the price of the barrel of reserve). If this reserve price v is proportional to the long-run oil prices, let be q the factor of proportionality
 so that v = q P. For developed reserve transactions, as higher is the price per barrel of a specific reserve, as higher is the economic quality for that reserve. For a fixed reserve volume and a fixed oil price, as higher is the factor q as higher is the value of this reserve. Call the factor q as the economic quality of the reserve
 defined as q = (v/(P. By using this insight, the value of a reserve V is the price of the barrel of reserve v times the reserve volume B, that is, V = v B.  The (business) equation for the developed reserve value V is
:

                                                           V   =   q P B                                                               (5)

This is the simplest way to relate the three most relevant variables, in order to access the value of a developed reserve using business thinking, which is very adequate for market valuation. The value q can be assessed either by reserves transactions in markets like USA (see Adelman & Koehn & Silva, 1989; and Adelman & Watkins, 1996) or by using the discounted cash flow approach (see below). The NPV equation for the business model is
:

                                                  NPV   =   q P B      D                                                        (6)

Without a good market value for q, this parameter can be estimated by using the NPV obtained from the discounted cash flow analysis. Considering the spreadsheet NPV estimate for a certain (average) oil price, we have one point of our straight line. The other one is defined by NPV(P=0) =  D. The Figure 5 below presents the chart for the above equation and illustrates this point. 
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Figure 5 - The NPV x P for the Business Model for Petroleum Concessions

The three variables in the equation 5 are assumed random in this paper, and are considered the three basic sources of uncertainties for the reserve value V. They are assumed mutually independent
.

3.2 - The Effect of Technical Uncertainty on the NPV function

The net present value equation NPV = V  D  =  q P B  D(B) is based on the expected value for the cash-flows, and it is necessary answer the following question: Is the NPV the same if we have no technical uncertainty on q and B compared with the case with technical uncertainty and using E[q] and E[B]? The answer is negative and both the reason and how to proceed are given below.

The theory of finance tells that technical uncertainty (like the uncertainty on reserve volume B), being independent of the market portfolio, it doesn't demand risk-premium because the stockholders of the firm are diversified investors
. However, the optimal management of technical uncertainty is appreciated by the investors because can leverage value either by optimal management of the opportunities of investment in information, as by the more valuable exercise of option to develop the oilfield using an optimized alternative of development. The exercise of the option to develop without knowing the correct reserve volume B and the technical factors affecting the quality of the reserve, almost surely will conduct to a sub-optimal development (e.g., see the cases reported in Demirmen, 2001). Let us quantify the losses with sub-optimal development. Instead a risk-aversion on technical uncertainty, is used a loss factor penalizing V due to the probability of sub-optimal development. 

With a better information on the reserve volume B we can fit better the investment D to its volume B. It was partially performed in this model because the investment cost D is a function of the reserve B and because is considered the optional nature of development. For example, knowing that B is lower than expected, we can reduce D. Without this information, using a higher investment D than the necessary it is possible to exercise options with apparent positive NPV in some scenarios of B, which could be ex-post negative due to the revealed lower reserve volume B. 

There are some sources of value for the investment in information. The best fit of D with B and the asymmetry caused by the optimal option exercise is the real options source of value. However, there are other losses in NPV function due to the lack of information. This is the object of this section. The value of V depends on q that depends of technical factors. The quality q is related with the present value of net revenues, that is, with the speed that the reserves are extracted and sold in the market. 

If the capital in place is sub-dimensioned for the reserve volume (revealed B is higher than expected), then the capacity constrains
 reduce the associated value of q. This occurs because even if all the reserve volume B can be extracted with the sub-dimensioned capital D, the present value of reserve (the product q P B) is lower due the slower extraction rate. This limitation suggests a penalty factor for the quality q for the cases where the reserve volume reveals higher than expected
. The same reasoning is possible if the average well productivity is higher than expected (the revealed higher productivity cannot be plenty transformed into value due to the sub-dimensioned capacity in place). Let us call this penalty factor of  up, which is defined in the interval (0, 1]. This factor penalizes the value of the developed reserve V if the ex-post q B > E[q B].

We could define another penalty factor down for the cases where the capital in place D reveals over-dimensioned for the reserve size and/or for the average well productivity. However, some empirical studies have been showing this value is near one, and in some special cases can be even higher than one. The latter can occur because if the reserve B is lower than expected, then an over-investment in capacity can permit a little bit higher production-peak when compared with the optimized process plant
, so set down ( (0, 2]. This can makes V a little bit higher, although the NPV remains lower than the optimized case (with full information) because the cost D is higher than the necessary (an apparent positive NPV can reveal an ex-post negative NPV). However, even in this case the factor down can be lower than 1 because the location of the wells could not be optimal and even with more wells than necessary the speed of extraction can be slightly lower than the optimal wells grid with full information. These offsetting effects explain why empirical studies points down ( 1.

In general, the NPV function with remaining technical uncertainties can be estimate with a Monte Carlo simulation of the distributions of q and B, by using the following equations
:

NPV  =  q P B    D(B)               if    q B = E[q B]                                                                     (7a)
NPV  = P  { E[q B]  +  up ( q B   E[q B]) }   D(B)        if    q B > E[q B]   

      (7b)

NPV  = P  { 2 q B  E[q B]    down (E[q B] q B) }    D(B)     if    q B < E[q B]                (7c)
To apply these equations, the remaining issue is how to estimate the value of the penalty factors. It can be done using discounted cash flow analysis by fixing the investment (capacity) and calculating the present value of the net revenues (that is, calculating V) for different scenarios for q and B. 

A practical way to estimate  is by performing this analysis for a few representative scenarios of the technical distribution and assuming that the penalty factors changes only with the variance of the technical uncertainty. For the partial revelation case (even with new information there is a remaining technical uncertainty) the penalty factor must be updated to a value between the previous value of  (without information) and the penalty factor for the full revelation case (for the full revelation,  = 1). If we build some rule of update for  such us "the difference between  and 1 is proportional to the remaining variance of technical uncertainty", it is easy to update the value of  without the necessity of running additional DCF analysis
 for different levels of partial revelation. With this rule, for the case of  zero variance for technical uncertainty the factor  is equal to one (not penalizing the NPV).

By using the practical updating procedure above for , we need only to estimate the penalty factors for the initial technical uncertainty (before the investment in information). One suggestion is to reduce the technical uncertainty distribution into three scenarios: upside, expected, and downside
. By running the DCF analysis for these scenarios with and without full information, with D projected for the expected case, we have typically the values
 of V displayed in the Figure 6.  
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Figure 6 - Analyzing the Lack of Optimization to Set the Penalty Factor

The picture above illustrates a case with down = 1 (the value Vd is the same for the cases with and without information
). The penalty factor up and the non-optimized value are given simply by:


               up   =   (Vu  E[V]) / (Vu, i   E[V])                                                                 (8a)

     Vu  =   E[V]  +  up (Vu, i   E[V] ) 
 



        (8b)

Vu  =   Pt  { E[q B]  +  up ( q B   E[q B]) }
 



        (8c)

In words, the factor up penalizes the value above the expected value. Remember that the capacity installed by the investment D was designed using the expected value. The reserve value without full information is an intermediate value between the expected reserve value and the reserve value with full information. This factor depends also on the flexibility embedded into the development plan.  In case of using a development system with an option to expand, the value up can be designed nearer of 1 than in case of a system without flexibility (for the option to expand case see Dias, 2001b).

To update the factor  and so the NPV after a partial revelation, is possible to perform many simulations with capacity constrains for different levels of variance for the technical uncertainty. However, in our examples is used a simpler framework. This factor tends to 1 when the variance of the technical uncertainty is equal zero. So, we can think in this equation for the updating with the process of reduction of variance, where bi = before information and ai = after information:

bi   =  ai  +  (1 ai ) [% variance reduction(B) + % variance reduction(q)] / 2
4 - The Real Options Framework with Monte Carlo Simulation

First, assume that the long-run expected oil price follows the popular Geometric Brownian Motion (GBM)
. The risk-neutralized format for this stochastic process is obtained using the risk-neutral drift (r – ) instead the real drift  (it is easy to prove that  risk premium  =  r )
                                                  dP  =  (r –  ) P dt   +  P dz                                                    (9)

Where:

r  =  interest rate, assumed to be 6% p.a.;

 =  convenience yield of the oil, assumed to be 6% p.a., too
; 

· =  volatility of the long-run oil price, assumed to be 20% p.a.; and 

dz  =  Wiener increment =  
[image: image7.wmf] 

dt

 

e

 , where   ~ N(0, 1)

The equation necessary to perform the Monte Carlo simulation of petroleum price sample paths is: 

Pt = Pt1 exp{ (r ) t  + 
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With the simulated oil price P(t) is possible to estimate the value of a developed reserve given by V(t) = q B P(t). The discrete simulation equation above is exact (doesn't need small time step).

For the general case that D follows a stochastic process (see section 3.1) due the market stochastic shock factor (t), we can write analogs risk-neutral GBM equations 9 and 10 for (t). In addition we can set a correlation coefficient P, ) between these stochastic processes.

The development threshold gives the decision rule for the optimal development. In order to ease the model, is better to work with normalized value of the reserve V/D. For V/D = 1, the NPV is zero. The normalized threshold is the critical (V/D)* level that makes optimal the immediate investment to develop the oilfield. It is the decision rule to exercise the option (exercise at or above the threshold), which maximizes the real options value. The optimal exercise curve (V/D)* of real option is function of the time and, for the GBM, depends only of
 , r, and . The threshold is obtained from the stochastic optimal control literature, the earlier exercise curve for American options (free boundary).

The use of normalized threshold (V/D)* for decision rule, instead P* or V*, permits to combine the technical and market uncertainties – represented by P(t), q, B and D(B, t) – into the same threshold curve, even if we are using equation 4b for the cost D. Without the normalization (if using V*), after a revelation of the reserve size B, the threshold curve V* changes because the exercise price of the development option changes (recall D is function of B), making the Monte Carlo simulation much more time consuming. In other words, without this normalization, every Monte Carlo iteration requires a new threshold value estimate considering the new exercise price D of the option to develop. By using the normalization, after a revelation of a reserve size E[B], the threshold (V/D)* for the optimal real option exercise is the same even changing the exercise price D(E[B]). This approach saves much computational time because the threshold curve is calculated only once. 

This normalization is possible because the real option value F is homogeneous of degree one
 in V and D, that is, F(V/D, D/D) = (1/D) F(V, D), and it permits to use V/D in the maximization problem. The threshold (V/D)* is homogeneous of degree zero in V and D, see McDonald & Siegel (1986, p.713) and Dixit & Pindyck (1994, pp.207-211). This trick was proved only for the Geometric Brownian Motions case, and extensions to other stochastic processes are a research matter. This is valid even in the general case that V and D follow correlated GBMs (McDonald & Siegel, 1986).   

The Best Alternative for Investment in Information and the Real Option Value

Consider that there are K alternatives of investment in information, k = 0, 1, 2, …K (being k = 0 is the alternative of not investing in information). Assume for the alternative k that the cost of learning is Ck and the time to learn is tk. So, the model considers that learning takes time, penalizing the alternatives that demands much time to reveal the information/knowledge. Initially imagine that the investment in information starts always at the initial instant (t = 0), see section 6.1 a discussion on timing of learning. Let Wk be the value of the real option including the cost and benefit of the alternative k. The aim is to choose the alternative k* with the highest Wk. Formally:
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The value Wk is the value of the (American) real option to develop the oilfield after (or conditional to) the partial revelation of the technical uncertainty with the alternative k, net of the learning cost Ck. That is, it is the benefit less the cost of the information, given by the following equation
:
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Where EQ is the expectation under risk-neutral (martingale) measure, permitting to calculate the expected present value of the payoff (NPV for development) using the risk-free discount rate
. The expectation is also conditional to the information revealed by alternative k (but not charged in the notation). This expectation is calculated using a Monte Carlo simulation. The tilde represents stochastic variables, being P(t) and possibly D(t) following risk-neutral GBMs, and the technical variables (with subscripts Rk) drawn from the revelation distributions (or conditional expectations functions) generated specifically by the alternative k, at the instant tk. 

The value Wk is maximized by optimal timing choice of the option exercise t* (called stopping time) in the interval from the revelation time of alternative k, tk, until the expiration T. In the Monte Carlo simulation, the stopping time for the sample path i is the first time that the normalized value of the project V/D reaches the normalized threshold (V/D)*. Formally:
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With the standard convention that the infimum of an empty set is + infinite, so that for the empty set (for a path without exercise) the value inside EQ(.) in the equation 12 is zero. 

Figure 7 shows how the expectation from equation 12 is calculated. The figure presents two sample paths from the Monte Carlo simulation. This approach combines continuous-time risk-neutral simulation of market uncertainty with the simulation of the revelation distributions from the technical uncertainties. This combination occurs at the "revelation time", when almost sure we have changes in the expectations on both the reserve size and the reserve quality (hence in V/D). It also shows the normalized threshold curve considering two years for the expiration of the development rights, and shows how the simulated sample paths are evaluated in this real options model.
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Figure 7 - The Sample Paths, Revelation Jumps, and Optimal Development Threshold

In the first sample path (blue, almost continuous line) the normalized value V/D evolves randomly due the risk-neutral simulation of the oil prices component. At the revelation time are drawn one sample from each revelation distribution (q and B) and the normalized value of reserve jumps (in this case jumps-up) almost surely, reflecting the new expectation on these technical parameters in this path. The value V/D continues its random trajectory, now due the (long-run) oil price oscillations and the stochastic shock  from the cost D. In this path V/D reaches the threshold curve at the point A (see the picture). The option is optimally exercised and multiplied by the risk-free discount rate factor, in order to calculate the present value. 

The second sample path (gray dashed line) evolves similarly but after suffering a jump-down from the samples of revelation distributions, the path evolves until the expiration without reaching the threshold line and expires worthless (point B). The option value F for this path i is zero (and negative for Wi, because Wi includes the cost of information). 

After thousands of simulated paths, we get an estimate of the real options value by summing up the options value Fi of all sample paths and dividing by the number of simulations (sample paths). Subtracting the cost to learn Ck we find the real option value Wk for the alternative k (eq. 12). Repeat the process for each one of the k alternatives and select the best alternative k*, the alternative with the higher Wk (see eq.11). Let us see some numerical examples. 

5 - Case Studies and Numerical Results

Before presenting the examples, let us see the model outputs that we are interested:

· NPV without Technical Uncertainty: This is the NPV calculated with the Equation 6 and using the current expectations on q, B (in this case the true values) and P;

· Real Options without Technical Uncertainty: This is the traditional real options value considering only the uncertainty on the oil prices and using the true and known values q and B;

· Simulated NPV with Technical Uncertainty (with up): The NPV function is calculated by simulation considering the penalty factor up (Equations 7a, 7b, 7c), and so it is lower than the NPV without technical uncertainty. For these examples assume down = 1; 

· Simulated Real Options without Information Revelation: The real options payoff is penalized by the factor up, being lower than the traditional real options value (without technical uncertainty); 

· Simulated Real Options with Technical Uncertainty and with Information Revelation: The real options model considers one alternative of investment in information. This value is different for each alternative of investment in information. This value is net of the information cost, and considers the time to learn. This value or the next select the best alternative (the higher one); and

· Dynamic Net Value of Information: It is the difference between the real options with and without the investment in information. The revelation distribution is used in the former and not used in the latter. This value of information is specific for each alternative of investment in information. This value (or the previous) selects the best alternative (the higher one)
.

Let us consider two oilfields cases, with two alternatives of investment in information for each case. What is the better alternative in each case? Is the investment in information better than the not investing in information?

Consider first the Oilfield 1. The technical uncertainties for q (in %) and B (in million barrels) are modeled with triangular distributions (minimum; most likely; maximum):

B ~ Triang (300; 600; 900)

q ~ Triang (8%; 15%; 22%)

The gamma factor (up) is 75%. 

Alternative 1 is the less expensive one and consists in drilling one vertical well. The learning cost is C1 = US$ 10 million and takes 45 days to get the information and knowledge on q and B. The revelation power (percentage of variance reduction) for B is 50%, whereas for q is 40%.

Alternative 2 consists in drilling one horizontal well. The learning cost is C2 = US$ 15 million and takes 60 days to get the information (new expectations for q and B). The revelation power (percentage of variance reduction) for B is 75%, whereas for q is 60%.

The development cost D is function only of E[B] and is given by:  D  =  310  +  (2.1 x E[B])

The results for the Oilfield 1 are given in the Table 1
.

Table 1 - Real Options Results for Oilfield 1

Alternatives
Alternative 1
Alternative 2

(1) NPV without Technical Uncertainty
230
230

(2) Real Options without Technical Uncertainty
302.1
302.1

(3) Simulated NPV with Technical Uncertainty (with up)
178.6
178.9

(4) Simulated Real Options with Technical Uncertainty  but without Information Revelation
267.9
263.3

(5) Simulated Real Options with Technical Uncertainty   and with Information Revelation 
298.4
307.0

(6) Dynamic Net Value of Information [ (5)  (4) ]
30.4
43.7

There are some values in the table that are different only due the simulation error (rows 3 and 4). The last two rows in the table present values net of cost of information. By looking the rows 5 or 6, we conclude that the Alternative 2 is the best even being 50% more expensive. It is recommended to increase the number of simulations in case of smaller differences between the alternatives.

Now consider the Oilfield 2. This second case study was presented in Souza Jr. & Dias & Maciel (2002). The development cost function is the same of Oilfield 1, given by D  =  310  +  (2.1 x E[B]). The technical uncertainties for q (in %) and B (in million barrels) are also modeled with triangular distributions (minimum; most likely; maximum):

B ~ Triang (145; 320; 560)

q ~ Triang (6%; 15%; 25%)

The gamma factor (up) is 65%. 

Alternative 1 is the less expensive one and consists in drilling one vertical well, but without performing production test. The learning cost is C1 = US$ 6 million and takes 35 days to get the information and knowledge on q and B. The revelation power (percentage of variance reduction) for B is 75%, whereas for q is 60%.

Alternative 2 consists in drilling one vertical well, but this time performing a production test. It costs C2 = US$ 12 million and takes 65 days to get the information and knowledge on q and B. The revelation power (percentage of variance reduction) for B is 80%, whereas for q is 70%.

The results for the Oilfield 2 are given in the Table 2. 

Table 2 - Real Options Results for Oilfield 2

Alternatives
Alternative 1
Alternative 2

(1) NPV without Technical Uncertainty
20.3
20.3

(2) Real Options without Technical Uncertainty
116.2
116.2

(3) Simulated NPV with Technical Uncertainty (with up)
 32.5
 33.1

(4) Simulated Real Options with Technical Uncertainty  but without Information Revelation
87.8
86.6

(5) Simulated Real Options with Technical Uncertainty     and with Information Revelation 
128.3
126.6

(6) Dynamic Net Value of Information [ (5)  (4) ]
40.5
39.9

In the case of Oilfield 2, the less expensive Alternative 1 is the best one. However, the difference is too small, so that is recommended another simulation with a higher number of iterations. In addition, we can use the data from the production test just after the drilling. But it requires quick evaluation of the new expectations of reserve size and productivity, because the offshore rig rent is very expensive. 

These numerical examples show two basic sources of value for the costly learning process to reduce the technical uncertainty. First is the revelation distribution variance that enhances the real options value (flexibility to choose a best fitted investment D, the right of non-development in case of bad news, etc.). Remember that as higher is the reduction of uncertainty, as higher is the variance of the revelation distribution. Second, technical uncertainty reduces the expected cash flow (so the development NPV) due the asymmetry caused by the capacity constrain that doesn't permit to take full advantage of the upside of the technical uncertainty. This effect is included in this paper by using a penalty factor up in the NPV function simulation. 

Additional simulations show that the effect of oil prices volatility on the value of information is not monotonic. This analysis and other comparative statics results are left to a future work.

6 - Extensions

6.1 - Timing Issue for the Investment in Information

Investment in information is expensive (e.g., the drilling cost of one offshore well ranges from US$ 4 million to US$ 20 million) and reveals only partial information on the size and the quality of the reserve. However, the investment cost for the oilfield development in general is much higher than the cost to acquire additional information (an offshore development typically requires more than US$ 1 billion). So, the development cost is typically about 100 times the learning cost! 

Hence, for the petroleum case, the issue of optimal timing of learning is not so relevant as the issue of optimal timing of development. The postponement of the investment in information has the benefit to delay a cost, but it has the disadvantage of delay the exercise of a possible "deep-in-the-money" project (in case of good news revelation)
. Even a neutral revelation (imagine the expectations remain the same after the revelation), the real options value is improved with the revelation because the penalty factor on the NPV function is lower after the new information. 

Let us reexamine the case study presented before, but if we delay six months and one year the investment in information. The present value of investment in information is reduced with the discount factor
, but the development option exercise is allowed only after this delay (6 months or one year) plus the time to learn. The results for the case of oilfield 1 are given in the Table 3.

Table 3 - Simulated Real Options with Technical Uncertainty and with Information Revelation for Oilfield 1 - Immediate Learning versus Learning Delay


Alternative 1
Alternative 2

Real Option without Learning 
267.9 (a)
263.3 (b)

Real Option with Immediate Learning 
298.4 (a)
307.0 (b)

Real Option with Learning Delay of 6 Months 
293.9 (c)
305.9 (d)

Real Option with Learning Delay of 1 Year 
291.2 (e)
299.7 (f)

Order of simulation errors
: (a)  0.26%  (b)  0.29%  (c)  0.03% (d)  0.16% (e)  0.36% (f)  0.43%.

The immediate learning is better for the Alternative 1 and slightly better for Alternative 2. Remember that Alternative 2 is more expensive than Alternative 1. The option to delay learning can be of some importance for cases of high cost of learning, lower power of revelation, lower penalization in the NPV function (up near 1), and real options "out-of-money".

6.2 - Valuation of Sequential Investment in Information

The valuation of an entire appraisal plan, with two or more appraisal wells (for offshore oilfields, generally one to three sequential drilling), is a typical case encountered in the upstream oil industry. The economic value for the last wells are less obvious. Let us return to the stylized example from Section 2, the rectangular oilfield where each well can be success or dry hole. What happens if after drilling the first well "B", the drilling of the second well "C" is conditional to the success scenario for the first well? This path-dependence can be important in the investment in information analysis. When comparing the parallel drilling of the wells "B" and "C" (Alternative 2 from Section 2) with the sequential drilling, both have the same revelation distribution after the two wells, see Figure 8. 
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Figure 8 - Two Sequential Investments in Information and the Resultant Revelation Distribution

However, the sequential drilling alternative has an additional option of not drilling the second well in case of first bad news, that is, the option to abandon the appraisal plan. So, the sequential drilling is more valuable than the parallel drilling
. The parallel drilling is calculated as a single shot investment in information, the Alternative 2 estimated in section 2. So, that Alternative 2 value is a lower bound for the value of the alternative of sequential investment in information. 

To simulate adequately the path-dependence nature of sequential investment in information, the revealed scenario by the first well becomes the new expectation for the second revelation distribution. By definition, the revealed scenario is the new expectation for the technical parameter (reserve size), so by Proposition 2 the revelation distribution at this point has mean equal to the current revealed scenario. This insight is useful for the Monte Carlo simulation of sequential investment in information, in order to consider the path-dependence of sequential investment with options that can be exercised along the path. The forward-looking path needs to be evaluated backwards in order to consider the possibility of options exercise between two revelations
 (option to abandon the appraisal plan, option to delay the second investment in information, and even the option to develop the oilfield with the current knowledge without gather more information). In this case, between two revelations there is a threshold curve for the optimal development and a threshold for the option to invest in information. These more complex issues will be better developed in another paper, but the main issue – the martingale property – is presented below. 

When no option is exercised after the first revelation (so that ex-ante there is a second revelation in every scenario of the first revelation), the revelation distribution after two sequential investments in information has the same expected value of the first revelation distribution. See in the last picture the revelation distribution after two sequential investments that this expectation is 250, that is the same of the revelation distribution for the Alternative 1 (single revelation, see section 2). So, the ex-ante expected values of sequential revelation distributions are all the same. This is a very general result for sequential investment in information and led us to the following proposition.

Proposition 4: The sequential revelation distributions {RX,1, RX,2, RX,3, …} are event-driven martingales
 (proof: see appendix). In short, ex-ante these random variables have the same mean
.

Where "event-driven" means activated by management, not by the simple passage of time. Think martingale as a "fair" game. Let Kn be capital of a gambler after the bet n and if all bets are fair in the sense that result in zero expected gain, then for n ( 0, Kn are martingales. Now, think bets as investments in information and Kn as the (conditional) expectation of a technical parameter after the n "bets". This property is useful for sequential investment in information because we are interested in when stop the sequential investment in information and there is a well-developed theory of optimal stopping for martingales (also called optimal sampling theorem for martingales). In order to understand better this proposition look the Figure 3, too. By considering the Alternative 2 as a sequence of two investments in information and Alternative 3 a sequence of three investments in information, the distributions presented in Figure 3 are sequential revelation distributions. Note that these distributions have the same mean, as required by the martingale property from Proposition 4. 

7 - Conclusions

The paper presents a dynamic approach to combine the technical uncertainties with market uncertainties using a Monte Carlo simulation. The contributions of the paper are the concept and the 4 properties of revelation distribution and its insertion in the real options model, filling a gap in real options literature on technical uncertainty modeling. The key Proposition 3 tells us that as higher is the revelation power of one alternative of investment in information, as higher is the revelation distribution variance. As the volatility in traditional options models, the revelation distribution variance adds value to the (real) learning option.  

The presented approach simplifies the implementation of real options model considering costly learning because the technical expert has to estimate only two inputs. First, the prior distribution (original uncertainty) expected value and variance. Second, for each relevant alternative of investment in information, the expected percentage of variance reduction. The traditional Bayesian models for technical uncertainty requires the likelihood function generating the possible posterior distributions. Here is used only the distribution of conditional expectations (or revelation distribution). Likelihood function can be much more complicated to estimate than the expected percentage of variance reduction
. Both the (frequentist) maximum likelihood and the Bayesian inferences converge to the true value of the parameter (Bedford & Cook, 2001, p.63), and so the method based in conditional expectations presented here. As in Bayesian approach, prior distribution plays an important role here, so that this approach can be considered an alternative Bayesian method. 

Although this conditional expectation approach was developed thinking in technical uncertainty from petroleum upstream industry, it has broader application
. All learning processes that can be characterized as variance reduction processes could be benefited, by using the four propositions to evaluate the learning cost/benefit. The concept of expectation is well suited for real options applications because finance works with expectations (the derivative price is an expectation).

With simple NPV function was possible to get faster results using a spreadsheet with Monte Carlo simulation facility. That simple equation adopted is based in a business vision on the quality of reserve and considers other uncertain key parameters like the reserve volume and the oil price. In addition, the exercise price of the option (the adequate development investment) changes with the revealed size of reserve, including this realistic aspect of the investment decision.

The case studies presented illustrate the applicability of the methodology in practical problems, including a factor due to the sub-optimal development caused by the incomplete information. This methodology permits to select the best alternative of investment in information from a relevant set, because it considers the cost of learning, the time to learn, and the revelation power, for each alternative of investment in information. Some extensions were briefly analyzed, such us the timing of investment in information, and the sequential (optional) investment in information. An in-depth analysis of these extensions is left to a future work.

APPENDIX

A) Definition of Conditional (on a -Algebra) Expectation

Conditioning the probability to a set A means a sample space contraction. Instead of taking expectations over the full space , we do so only over the set A ( Some definitions are possible depending if the conditioning is on an event (set), on a discrete or continuous random variable, or an arbitrary random variable. It is presented below the more general case. Let X be an integrable
 random variable mapping the probability space (P) into a measurable space, where  is the sample space (set of all possible outcomes ),  is the sigma-algebra
 and P the probability measure. Let  be a sub-sigma-algebra of  (that is, ()
. The conditional expectation of X given , E[X | ] is a -measurable function
 that satisfies the equation below for every Y ( :
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B) Definition of Conditional (on a -Algebra) Variance: 

Let the random variable X have a conditional expectation E[X | ] with respect to the sub-sigma-algebra  of subsets of . The conditional variance of X is a random variable defined by
:

Var(X | ) = E{( X  E[X | ] )2 | }
 Where  is a sub-sigma-algebra of , and is the sigma-algebra from the (unconditional) probability space, the triple (P). 

C) Conditional Expectation Properties & Miscellaneous 

Let X1 and X2 random variables, and  the possible outcomes from the information revelation
.

Linearity Property:      E[(a X1  +  b X2) |  ]     =   a E[ X1 | ]   +   b E[ X2 | ]
Jensen's Inequality: If g(.) is a convex function,    g{ E[ X | ] }    (    E[ g(X) | ]
Measurability: If X is -measurable, then E[ X |  ] = X, a.s. In addition, ordinary algebraic operations such as sum, multiplication, division, don't destroy measurability (Gallant, 1997, p.47).

Taking Out What Is Known: If Z is -measurable and bounded, then E[ Z X |  ] = Z E[ X |  ] , a.s.

Joint Probability Density:    f(x, )    =    f()  f(x|)
In the petroleum problem, f() is the density of the outcomes from the investment in information (e.g., drilling reveals data on net-pay h, area A and productivity index PI), whereas f(x|) is the density of X (e.g., X is the volume of the reserve) conditional on the information revelation. 

Order of Integration Doesn’t Matter: When taking expectations on a function g(x, y), the integration order doesn't matter (Lawrence, 1999, p.63): Ex,y [g(x, y)] =  Ex {Ey|x [g(x, y)]}  =  Ey {Ex|y [g(x, y)]}
D) Existence of Expectation for Revelation Distribution and the Proof of Proposition 2

Assume that X has finite expectation (is "integrable"), and I is the conditioning new information both in the probability space (P). Hence the conditional expectations RX(i) = E[X | I = i] exists and is finite almost surely (a.s.). This is a consequence of Radon-Nikodým Theorem
, see for example James (1996, p.176) and Kolmogorov (1933, p.53). See Kolmogorov (1933, p.40) to understand why E[ |X| ] < (  is the necessary and sufficient condition for the existence of E[X]. 

Let X be a random variable with E[ |X| ] < (. Let  be a sub-sigma-algebra of . Then exists a random variable RX such that RX is  measurable and its expectation also exists
. The proofs that a.s. E[ |X| ] < ( ( E[ | RX | ] < ( (and hence the existence of revelation distribution expectation) and that RX is  measurable, are given in Williams (1991, pp.85-86). 

The Proposition 2 can be formulated as: if RX is any version
 of E[X | ] then E[RX] = E[X]. The particular proofs below use simpler approach without concepts from measure theory. For more general proof, see Williams (1991, p.89). First let us prove for the case when the parameter with technical uncertainty X and the conditioning information I are discrete random variables (the proof follows Ross, 1998, p.338). In this discrete case the Proposition 2 becomes (P{.} means probability):
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 The left side is the expectation of RX by definition. By definition of RX the left side can be written:
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(and Proposition 2 is proved)

Now the proof for the continuous case (following James, 1996, p.176), when X and I have joint probability density f(x, i) and the conditional density is f(x|i) = f(x, i)/fI(i), being fI(i) > 0.

RX(i) = 
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E[RX] =  
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   (and Proposition 2 is proved)
E) Proof of Equation of the Variance of Revelation Distribution (Proposition 3)

Let RX = E[X | I] be the random variable with probability distribution named revelation distribution. We know that the conditional variance of X given the information I = i, is defined by:

Var(X | I ) = E[(X  E[X | I ])2 | I ]

A very known equation for the variance of a random variable Y is Var[Y] = E[Y2]  (E[Y])2. So
: 

Var(RX) = Var(E[X | I])   = E[(E[X | I ])2]  (E[E[X | I ]])2  =  E[(E[X | I ])2]  (E[X])2               (*)

By using the same known equation for Var(X | I ), we obtain:

Var(X | I )  = E[X2 | I]  (E[X | I ])2 . By taking the expectations, we have:

E[Var(X | I )]  = E[E[X2 | I]]  E[(E[X | I ])2]  =  E[X2]  E[(E[X | I ])2]      (**) 

By summing (*) and (**) and rearranging, we complete the proof:

Var(E[X | I])  = Var(RX)  = Var(X)  E[Var(X | I )]
F) Proof for the Proposition 4 (Sequential Revelation Variables Are Martingales) 

The sequential revelation random variables {RX,1, RX,2, RX,3, …} are event-driven martingales
. 

Proof
: A martingale must meet three conditions (see Williams, 1991, p.94). The first condition is a consequence of the assumption that the technical parameter with uncertain, X, is integrable and from the Radon-Nikodým Theorem we must have E[ |RX| ] < ( almost surely (existence of revelation distribution expectation, mentioned before)
. The 2nd condition, the revelation process is adapted to a filtration
 {(n: n ( 0}, that is, an increasing family of sub-sigma-algebras of  that is, ((0 ( (1 ( (2 ( … ( (n = ). The expression (n 1 ( (n means the increase in information as n progresses. Figure 4 helps see that this is true. The 3rd condition is that E[RX,n | (n 1]  = RX,n  1 almost surely. To proof this, let us first set the Tower Property (Williams, 1991, p.88). If ( is a sub-sigma-algebra of , then almost surely we have E[RX | ( ] (= E[E[X | ] | ( ]) = E[X | ( ]. This property is immediate from the definition of conditional expectation (Williams, 1991, p.90)
. Now, we follow the martingale example called "accumulating data about a random variable" from Williams (1991, p.96). Let the variable ( ( L1(P) and define Rn = E[( | (n]. By the Tower Property we have:

E[Rn  | (n  1]  =  E[E[( | (n] | (n  1]  = E[( | (n  1] = Rn  1 , a.s. Hence, RX, n are martingales.

G) Stochastic Process When the Value of Project Is Proportional to the Commodity Price 

Let us prove that if the oil prices (P) follow a geometric Brownian motion (GBM) and the value of the project (V) is proportional to the oil prices, then V also follows a GBM and with the same parameters of P. Consider the following risk-neutral GBM for the oil prices and the equation for V:

dP = (r ) P dt +  P dz 

V = q B P

By applying the Itô’s Lemma (see Dixit & Pindyck, 1994, p.80): 

dV = 
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 ; Hence:

dV   =   q B (dP)   =    q B P (r ) dt + q B P  dz  (  dV = (r ) V dt +  V dz  
So, V also follows a risk-neutral GBM and with the same parameters   e  from the process for P.

The same is not valid for the case where V = q P B  C, where C is a fixed cost and NPV = V – D (similar to Schwartz, 1997, eq.51). By using the Itô’s Lemma, we will find the following stochastic process for V:

dV  =  d(V + C)  =  (r ) (V + C) dt +  (V + C) dz

We have a GBM for V + C, not for the underlying asset V itself. So, some practical tricks such as the normalization apparently cannot be used. However, by considering the problem as if we have another underlying stochastic variable V’ = q P B; with exercise price D’ = D + C, we could solve the problem in a similar way.
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� Economic quality of the reserve includes technical factors like permeability/porosity properties of the reservoir-rock, the fluid properties, reservoir inflow mechanism, and market factors like costs. It will be more precisely defined later.  


� See Chorn & Carr (1997), Chorn & Croft (2000), Dias (2001a), Galli & Armstrong & Jehl (1999), Whiteside & Drown & Levy (2001) among others. For a discussion of real options models, see Dixit & Pindyck (1994) and Trigeorgis (1996). The term "real options" was first used by Myers (1977) and the real options in petroleum started with Tourinho (1979).


� Conditional expectation E[X | Y] is a random variable which takes the value E[X | Y = y] with probability P(Y = y). See the book of Sheldon Ross (1998) for a good introduction to conditional expectation without measure theory.


� Likelihood function is just a quantitative description of the information reliability. See Lindley, 1985, for this point and for a good introduction on the traditional Bayesian theory on value of information.


� As in certain statistical problems, which the use of linear regression is equivalent but simpler than maximum likelihood and Bayesian methods, by working with conditional expectation I found robust practical results in a simpler way. Prof. Goldberger (1991, preface) also adopts the conditional expectation function "as the key feature of a multivariate population for economists who are interested in relations among economic variables… – a very simple concept". 


� In addition, the error  = X  E[X | I] has zero covariance with every function of  I (see Goldberger, 1991, p. 53).


� See also Gallant (1997, pp.109-112) for the nonlinear case. Example: a quadratic regression Y versus X will minimize the MSE (a, b, c) = E[Y  a  bX  cX2 ]2 by choosing the parameters a*, b*, c*. If this quadratic function is the best function in the sense that minimizes MSE, we have for X = x that g(x; a*, b*, c*) = E[Y|X = x]. Gallant proved that the best polynomial predictor (polynomial regression) of order N is the conditional expectation when N tends to infinite.  


� The paper of Martzoukos & Trigeorgis (2001) is one exception. They model the costly learning (investment in information) as a jump of random size activated by the management (so, it’s an event-driven process like here). In their setting, the learning is related only with the underlying asset value (here is included the effect on the exercise price of the option) and their focuses are the timing of learning and the multistage learning. Here the focuses are the distribution of expectations (jump size) after the investment in information and the selection of the best project to invest in information.  


� Lawrence (1999, p.156) argues that it is a time-driven process with different chronological length because the events are successive along the time. It doesn't work here because the events are optional, activated by the firm, and in parallel there is another process (oil prices) which the information arrive continuously along the time, which is not optional. The complexity of these two superposed processes (revelation process and market process) requires a specific approach. 


� Even for a low explored basin, with many different firms with tracts in this basin, new information from a drilling or from new processed seismic data can take many months. The information externalities from other firms can be modeled with a Poisson process (occurs only at discrete points of the time). In short, the model of technical information arriving continuously along the time is not appropriate for petroleum exploration and production investments at firm level.  


� We will see that the revelation distribution helps to solve the apparent real options paradox (Why learn?) described in the interesting paper of Martzoukos & Trigeorgis (2001).


� The paper main contributions are not the proofs of the propositions. Even because the propositions are based in some selected known theorems from the conditional expectations literature.


� Denomination of revealed variance and related concepts has been used in papers on value of information in a dynamic framework. For example, Childs & Ott & Riddiough (2001, p.46) names "revealed variance" the variance of conditional expectations. Here this variance is named variance of revelation distribution. 


� The author has been using this concept since 1998, and it appeared in Dias (2001a). However, here it is presented in a more formal framework with special focus on the properties of the revelation distribution. 


� These propositions are valid almost surely, that is, are valid except in a set with probability measure equal to zero, and use other regular assumptions (e.g., X is integrable, finite variance). See the appendix for technical details. 


� In more formal terms, if we have a sequence of information I1, I2, …In on the technical variable X, Proposition 1 can be view as a trivial application of martingale convergence theorem. This theorem gives conditions to convergence to a limit random variable as n ( ∞ (we will see in Proposition 4 that the sequential revelation distributions are martingales).


� Lawrence (1999, p.69) states: "Perfect information occurs when the information structure provides categorical direct messages that identify precisely and unequivocally the state that occurs". Childs & Ott & Riddiough (2001, p.47) use the terminology "full information" with the same meaning. Here is used  full revelation.


� This can be viewed as an application of a property known as law of iterated expectations or tower property, from the conditional expectation literature.


� In general, "there are an infinity of such conditional distributions" Goldberger (1991, p.40), one posterior distribution for each possible outcome from the investment in information (for each value i that the random variable I can assume).


� In reality, these alternatives are not mutually exclusive because the drilling can be performed sequentially. However, in order to develop the intuition for the revelation distributions for alternatives with different powers of revelation, imagine three different alternatives in terms of cost of information and power of revelation. Later I examine the case of sequential investment in information, returning to this example as a sequential process.


� In our setting doesn't matter the posterior distribution class, only its expected variance is necessary to estimate the revelation distribution variance and the penalty factor for the NPV function. In general the posterior distribution doesn't need to have the same type of the prior distribution. However, this occurs for the conjugate distributions, e.g., the exponential families (exponential, gamma, normal), see Bedford & Cooke (2001, pp.67-70) or Jammernegg (1988, p.10). 


� As we saw in the stylized oilfield example, after one investment in information the conditional or posterior distribution depends of the outcome (with good news the mean of posterior distribution is higher than in case of bad news). In the more general case, infinite posterior distributions are possible. The revelation distribution is unique for a given alternative of investment in information. This is another practical advantage to work with revelation distribution. 


� With the joint probability density function is possible to define precisely the revelation distribution. But in our simply setting it is not necessary (the cost/benefit to set the exact shape for the revelation distribution does not look attractive).


� Bjerksund & Ekern (1990) showed that for initial oilfield development purposes, in general is possible to ignore both temporary stopping and abandonment options in the presence of the option to delay the investment (the expected time to abandon is very far in time to weight in the development decision). In some case (short-duration projects, projects with option to expand) can be necessary to consider other options when exercising the development option. See Trigeorgis (1993) and Dixit & Pindyck (2000) for discussion of interactions of different real options.


� The cost of abandon can be considered as investment, and its present value (net of tax benefit) is included in D. 


� This alternative was used in the PUC-Petrobras research project to model an option to expand the production through new wells. This case was easier than the general case because the technical parameter was set at well level outcome.


� This approach uses the revelation distributions in a more basic level. In the future, it will become the preferable one.


� The associate gas reserve in this oilfield problem is incorporated into the reserve value B by using an economic equivalence relation between the gas and the oil. This relation depends on the local gas market price and demand.


� In reality, as analyzed in a PUC-Petrobras research, the optimal capacity choice depends even of the oil prices – for higher oil prices is better faster extraction with more wells, etc., so higher D. This extension is left to a future work.


� For geriatric reserves (reserves near of the abandonment time) are possible to get developed reserve assets with negative value because there is the abandon cost  (environmental recovery cost). This can be ruled out by incorporating this cost into the development cost account D instead V (abandon cost is not operational cost). Even if by convenience the abandon cost is accounted in V, our problem is the investment decision on the oilfield development, that is, an option to get young reserves and not the geriatric one. So, here the value of the barrel of reserve always is positive. 


� Paddock & Siegel & Smith (1988) claims that the one-third rule (q = 1/3) for the US reserves is a good first estimate.


� We can think that q has a technical component qT ( [0, 1] representing the fluid quality and a normalized productivity, and another component qM representing market characteristics (operational costs, taxes). The expectation of qT changes only when a new investment in information is performed, whereas the market component qM evolves continuously with time, starting with qM(t = 0) = 1. This extension is left for a future work.


� The alternative is the equation V = q' B P  C, where C is a present value of part of operational cost (the other part is in q'). See a discussion and comparison of these models at: � HYPERLINK http://www.puc-rio.br/marco.ind/payoff_model.html ��http://www.puc-rio.br/marco.ind/payoff_model.html�  


� For the fiscal regime of concessions (USA, UK, Brazil, etc.), the linear equation for the NPV with the oil prices is at least a very good approximation.


� This assumption simplifies the model but it is not necessary. It is possible to set correlation between q, B, P, using this real options model. We could think q and B with a small positive correlation. Using a positive correlation between q and B enhances the value of information, but with some costs in computational time, input design and output interpretation. By considering the reserve quality q linked to a normalized productivity index (dividing by the thickness of reservoir, the net pay) instead the productivity index itself, is easier to agree with the simplifying independence assumption. In a more rigorous setting, even B is not independent of P, because higher P permits to extend the reserve life. In reality, the oil and gas volumes in-place are the true pure technical parameters independent of P, not the reserve volume B (the recoverable volume) itself. However, for development decisions, most oil industry people model B and P as independent variables because the volume variation occurs in the ending of the oilfield life and it is not relevant in present value terms. 


� If we forget that the rational stockholders of the firm are diversified investors, rejecting investment opportunities with positive NPV because the risk-aversion of managers for these kind of uncertainties (as argued by traditional decision analysis), we could be destroying value of the stockholders. Agency conflicts between managers and stockholders are largely reported in finance literature, and they can have very different risk preferences, see for example Byrd & Parrino & Oritsch (1998) for the problems of "differential risk preference" and "different horizon for investment results".  


� Limitation of processing facilities in the platform, limitation of the pipeline capacity, limitation of the number and position of the wells, limitation of water injection system, etc.


� This penalty factor is not derived from "risk aversion of managers on technical uncertainty " or "manager's utility" as used in traditional decision analysis literature. The penalty factors will be derived from discounted cash flow analysis of value lost due the reserves production with limited capacity system and sub-optimal location for the wells. The method presented in this paper is simple, but more sophisticated methods can be used for the penalty factors.


� It is optimal to make some limitation in the capacity, by design a plateau of production peak for 2 to 4 years instead designing a more expensive higher capacity to meet a maximum production for a single year. See for example Ekern (1988) for the typical production profile in this kind of projects. In addition, the ex-post excess of capacity can be rented to process and/or transport hydrocarbons of neighboring oilfields during some time in some cases.


� Of course, considering mean-independence between q and B, it is possible to simplify writing E[q B] = E[q] E[B]. See the next figure and the equations 8 in order to understand the equation 7b. The eq. 7c is found in a similar reasoning way.


� But is possible if a better precision is required in the model. The simplification reduces the number of DCF rounds.


� The upside scenario can be a subjective representative optimistic scenario or, even better, the expected value of the upside distribution obtained by truncating the original distribution at the original expected value. 


� The value V in each scenario s is simply Vs = NPVs  D. Remember that D is already in present value and the NPVs are obtained by running three times the DCF spreadsheet, using different production profiles (constrained in the upside scenario) and operational costs, but with the same investment.  


� However, the NPV with information generally is higher than the NPV without information for the downside scenario because the revelation of a lower value for B permits that the investment D be reduced.


� Analyzing the case of petroleum real assets, Pindyck (1999) concludes that for applications like real options “the GBM assumption is unlikely to lead to large errors in the optimal investment rule”. This conclusion is reaffirmed in his more recent study (Pindyck, 2001). See Dias (2001b) for a discussion of different stochastic processes for oil prices.


� By setting r =  the risk-neutral drift is zero. See Pickles & Smith (1993, pp.20-21) for a rationale on this point. 


� With D also following a GBM due the shock , the threshold depends of T, D and , being T the "total volatility", that is, 2T = 2P  + 2D  2  P D , and the dividend yield of D, D, can be assumed equal the interest rate r. Note that we are assuming  V = P. This occurs because V is proportional to P (V = K P) and P follows a GBM (proof: appendix). 


� A function is homogeneous of degree n in x if F(tx) = tn F(x) for all t > 0, n ( Z, and x is a vector of variables. 


� Equations 11 and 12 are consistent with the maximization of expect utility, but in a dynamical real options framework. Compare the simple concept presented by Lindley (1985, pp.134-135) for the “choice of how much sampling to do”. These equations are consistent with the value of the informed decision defined by Lawrence (1999, p.65). He defines optimal action a* as the action that maximizes the conditional expected utility, where the conditioning is the new information. Here the job is a bit more dynamic and complex because the maximization considers three optimal actions. These are the optimal investment choice D*|B conditional to the revealed expected reserve volume B, the optimal timing t* for the exercise of the option to develop, and the optimal choice of the alternative of investment in information k*.    


� The risk-free discount rate is used because the technical uncertainty doesn't demand risk-premium for diversified shareholders (no correlation with the market portfolio) and the market uncertainty is already penalized with the risk-neutral measure.


� Because it is the difference of two simulated values, the error can be larger than the previous indicator.


� Used 10,000 iterations for Alternative 1 and 100,000 for Alternative 2, with a hybrid quasi-Monte Carlo simulation (it is more efficient than traditional Monte Carlo) see � HYPERLINK "http://www.puc-rio.br/marco.ind/" ��http://www.puc-rio.br/marco.ind/quasi_mc.html�. The estimated errors of the simulation were lower than  0.3% for both alternatives. The computational time using Pentium III, 1 GHz, were less than 2 minutes for 10,000 iterations and about 16 minutes for 100,000 iterations, with Excel 97 spreadsheet.


� According Whiteside & Drown & Levy (2001, p.6), the incremental value of appraisal is higher for out-of-money projects than for in-the-money projects. Some simulations performed here (changing only D) not confirm this rule.


� The discount factor is e rt. For r = 6%, the discount factors are 0.970 and 0.942, respectively for 6 months and 1 year.


� These values are for 10,000 simulations, except items (b) and (d), which were used 100,000 simulations due the close values. The error is only an estimate because compares the traditional real options value resulted from the simulation with the efficient analytic approximation for American call option of Bjerksund & Stensland (see Haug, 1998, pp.26-29).


� See Dias (1997) for a numerical example of value added with the option to abandon the sequential appraisal plan.


� For example, the first revelation occurs after the drilling of the wells from a Pilot Production System (small system) and the second revelation occurs after two years of pilot production when we can learn about the aquifer performance as primary reservoir inflow mechanisms. The overall oilfield development option can become deep-in-the-money after the first revelation, that is, waiting two years for more information can be less valuable than the immediate development. 


� For a discussion on martingales, see the didactic book of Williams (1991).


� Although in the Monte Carlo simulation the second revelation distribution uses as mean the scenario revealed by the first revelation (path-dependence), the combined distribution resultant from the two revelations has the mean equal the mean of the first revelation distribution. 


� The concept of percentage of variance reduction has important practical consequences in oil corporations' culture, by ordering the alternatives of investment in information in terms of its revelation (or learning) power. For example, the variance reduction obtained by drilling a slim well is lower than for a vertical well with production test, which is lower than the obtained with a horizontal well plus production test, which is lower than the one from a pilot production system.


� According Bedford & Cook (2001, p.20), a full mathematical representation of the uncertainty comprises three things: (a) axioms specifying the formal properties of uncertainty; (b) interpretations connecting the axioms with observable phenomena; and (c) measurement procedures providing practical methods for interpreting the axiom system. This paper tried to follow this way, with a minimum set of propositions, discussion of the concepts and practical examples.  


� A function f that is -integrable (in Lebesgue sense) is written f ( L1(). So, it is assumed that X ( L1.


� Sigma-algebra on is a family of events E (subsets of ), including the empty set, complements of sets that belong to  and countable union of sequence of sets En ( 


� See Shyraiev (1996, p.212) or Williams (1991, p.84). A sub-sigma-algebra represents "less (or equal) information".


� See for example Williams (1991, p.29-30) for the definition of -measurable functions in a measurable space ().


� See for example Shyraiev, 1996, p.214.


� See for example James (1996, p. 177) or Williams (1991, p.88) for most of these properties (and others).


� Kolmogorov used this theorem (1930) on differentiation of set functions for his axiomatic theory of probability. In this approach, first is defined conditional expectation and conditional probability is derived after from it. The axiomatic approach permits to work with conditioning events with very small or zero probability (see Rao, 1993, pp.25-26). 


� RX is also the Hilbert space projection of X on the closed linear subspace L2(P) of L2(P) and hence the conditional expectation does exist (see Jacod & Protter, 2000, p.196). Hilbert space L2 is the space of random variables with finite second moments, which is generated by linear combinations of square integrable functions from  ( (.


� See Williams (1991, p.84) for the definition of version. If R*X is a version of RX, we have R*X = RX almost surely.


� When solving the problem 2, Shyraiev, 1996, p.83, I had the idea to use it here. Similar proof is in Ross (1998, p.348).


� Assume that X is square-integrable, that is, X ( L2(P).


� The sequence of revelation random variables RX, n are called Doob type martingale (see Ross, 1996, p.297).


� For a nonmeasure theoretic proof, see Ross (1996, p.297). For any n > 0, E[Rn | I1, I2, ….In1] = Rn  1 .


� A simple proof: RX, n = E[X| I0, I1, … In] ( E[ |RX, n | ] = E{ | E[X | I0, … In] | } ( E{ E[ |X| | I0, … In] } = E[ |X | ] < ∞


� Think filtration (n generated by the information {I1, I2, … In} as a set containing the information available at stage n.


� Brzezniak & Zastawniak (1999, p.30) presents this "immediate" result into 4 lines.
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