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 Abstract 

This paper discusses a portfolio theory for real assets with main focus on petroleum exploration and 

development assets. Exploratory assets are prospects with chances to find out development assets 

(oilfields in this case). By the real options point of view, exploratory assets are compound options. In 

opposition to financial assets portfolio theory, the paper shows that positive correlation between 

exploratory assets is a desirable feature because it increases both the (endogenous) learning option 

value and the synergy gain with development assets. In the first case due to the learning sequential 

nature, with the option to limit losses if occur bad news and creating the option to develop if occur 

good news. In the second case because a higher (positive) correlation increases the probability of 

multiple success and so the synergy gain by sharing the development infrastructure. The analysis of 

the simplest portfolio, i.e., with only two exploratory assets, provides important insights about 

learning, synergy and option to defer exploration. The optimal intertemporal distribution of projects 

shall use the concept of option to defer. A necessary condition for the immediate exercise of an 

exploratory option (wildcat drilling investment) is the existence of at least one scenario where the 

development option is deep-in-the-money. For all projects in which deferring is optimal, we need an 

idea of both the probability of later exercise and the expected time of exercise, conditional to option 

exercise occurrence. This portfolio planning is necessary for resource management purposes and is 

performed by real-world (and not risk-neutral) stochastic processes simulation. A multiple asset 

portfolio of exploratory prospects example is analyzed, highlighting the learning processes modeled 

as information revelation processes, with discussion of their properties. 
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1 – Introduction  

The theory of financial portfolio is well developed and popular with the Nobel Laureate Markowitz’ 

portfolio theory, which is based in the mean-variance optimization approach (see Markowitz, 1959). 

This theory highlights the diversification effect with the proposed optimization approach, so that we 

can reduce the risk (portfolio variance) without reducing the expected return, by choosing a suitable 

set of assets with low correlations between them. This theory has tentatively been extended to real 

assets portfolio case, mainly in professional literature. However, although there are good papers 

showing that diversification principles remain valid (e.g., see Ball Jr. & Savage, 1999), the real assets 

case demands a richer portfolio theory in order to capture issues like synergy between real assets and 

the real options embedded into real assets such as the option to defer and learning options. 

A decade after the publication of first textbooks of Dixit & Pindyck (1994) and Trigeorgis (1996), the 

real options theory nowadays is well developed and widely accepted.  However, the portfolio theory 

for real assets under uncertainty remains in its infancy even considering the large literature on real 

options, which has focused on single asset valuation (in some cases with multiple interacting options 

in the same asset). There are some exceptions, some of which are briefly discussed here (section 2). 

This paper analyzes the portfolio theory for real assets with emphasis on the role of correlation on 

synergy and learning, with focus on the petroleum exploration portfolio case. This application allows 

simple examples to understand the role of learning options and synergy between two or more 

exploratory assets, as well as the option to defer and its consequences in portfolio planning for oil 

companies. For example, if a project shall be postponed, in order to plan future budget and resources 

for that (like human resources training), portfolio planning demands both the probability of this 

option be exercised in the near future and the expected waiting time for this real option be exercised. 

Learning means that by exercising one option we generate a positive externality to the other asset 

(information revelation) so that, depending on the learning outcome from the first exercise, the 

exercise of the second asset option can become more or less attractive. We’ll show that in the paper 

context the correlation coefficient is a good learning measure to capture this effect. Synergy between 

two real options means that the joint real option value is higher than the sum of individual real option 

values. In our case, it means that we can merge the development investment with scale gains, in order 

to exploit the synergy between the projects, increasing the real option value of joint development.    

In addition, the exploratory asset is a compound real option because, in case of exercise (by drilling a 

wildcat well) and in case of success, we get another option, namely the option to develop the 



discovered oilfield. This compound issue has implications for exercising the exploratory option, as 

we’ll see. Contrasting some previous related literature (e.g., Childs, 1995), the projects here are not 

mutually exclusive (all exploratory and development projects can be implemented). Instead, both the 

presence of exploratory project enhances the value of the other exploratory asset (due to the learning) 

and the presence of development project enhances the value of the other development project (due to 

synergy). Optionality and correlation drive the value enhancement, as we’ll see in this paper.     

This paper is organized as follow. In the second section is briefly discussed the previous literature on 

portfolio of real options. Section 3 presents a simple portfolio case with two assets with compound 

real options, highlighting the effect of correlation on learning and synergy. Section 4 discusses the 

option to defer of both exploratory and development options and the implications for portfolio 

planning. Section 5 put the case from section 3 into a dynamic framework, by considering the option 

to defer and its interaction with learning and synergy. Section 6 discusses the case of more than two 

exploratory assets, focusing in learning aspects and presenting a framework named revelation 

processes, a sequence of conditional expectation distributions. Section 7 set some conclusions and 

suggestions for future research. 

2 – Real Options Literature on Portfolio Theory  

The portfolio theory for real assets is much more complex than for financial assets in many aspects. 

First, the optional nature of real assets: in many cases we have multiple interacting compound options 

embedded in the same asset. Second, learning effect due to the information spillover to other assets 

when exercising the option to invest in one asset correlated with others in the portfolio. Third, the 

synergy effect due to economy of scale of joint development options exercise or due to economy of 

scope. Fourth, the non-divisibility of projects and practical aspects like the physical resource 

constrains, demand an adequate intertemporal portfolio resource planning to make feasible the 

optimal exercise of real options. Fifth, other aspects such as agency issues like the incentive for the 

optimal portfolio management by the firm executives and strategic interactions with other firms, like 

competition and cooperation opportunities (game-theoretic aspects).  

The synergy effect can be viewed as a particular and non-extreme case of super-additive portfolio. 

The additive degree between projects ranges from the extreme sub-additive case, i.e., mutually 

exclusive (or competing) projects (e.g., we have two projects with different technologies to produce 

the same product), to the other extreme super-additive case, i.e., one project is a necessary 



complement of the other (e.g., a gas field development project and a gas pipeline project linking this 

area to the market).  

The theory of real options interactions in the same asset is well developed with the papers of Brennan 

& Schwartz (1985), Dixit (1989), Trigeorgis (1993), Kulatilaka (1995) and Dixit & Pindyck (2000). 

However, the portfolio theory for real assets with real options theory lens (i.e., considering options 

interactions in different real assets) is still in development. This paper intends to contribute in some 

relevant aspects of this theory. In this section is discussed some relevant and rare previous literature.  

Brosch (2001) discusses some portfolio aspects for real assets such as the diversification effect, 

pointing out that the firm cannot create value by diversification (but reduces the risk) and classifying 

direct qualitative interaction between assets from the extreme of “strictly substitute” to “strictly 

complementary”, passing by the intermediate point of “independent”. However, contrasting this 

paper, instead quantifying the additive degree in function of the dependence (correlation) degree 

between the assets, he focus the extreme case of  “strictly complementary”, which is similar to the 

case of compound options in the same asset. 

The other extreme case is the sub-additive portfolio of mutually exclusive projects. For the cases 

without learning, the option to choose one (the maximum value) from n competing assets with 

correlated market uncertainties, has been analyzed in both financial options literature (e.g., Stulz, 

1982; Margrabe, 1978) and in real options literature (e.g., Carr, 1995). In this case, positive 

correlation decreases the value of the option and negative correlation increases the value of the 

option on a basket of assets. However, when we consider learning and/or synergy, the role of 

correlation changes, as we’ll see in this paper. 

Vassolo & Anand & Folta (2004) analyzes a portfolio of exploration assets, with focus on 

biotechnology applications, showing that the assets can be either sub-additive or super-additive. 

Their interest are strategic aspects, e.g., one investment opportunity can be super-additive for one 

firm, but not for other, if this firm has fungible, unused capabilities, to exploit quickly and paying a 

lower price to exercise this growth option. Their framework highlights the value of technology 

alliances, viewed as real options, and they make some empirical tests to support their theory. 

Luehrman (1998) is a popular article that highlights that strategy is a portfolio of real options, e.g., 

business strategy is much more a series of options than a series of static cash flows. However, he 

doesn’t quantify the role of correlation over the portfolio value with learning and synergy as here.    



Smith (2004) and Smith & Thompson (2004) analyze a portfolio of petroleum exploration assets 

using real options approach. However, they focus on the specific optimal stopping problem of a 

drilling sequence of dry holes, not in the issues analyzed in this paper. That papers show that 

dependence (positive correlation in this case) increases not only the risk, but also the portfolio value. 

Childs (1995) is an important contribution to this research topic1. His focus of applications is 

different of this paper mainly because he considers mutually exclusive development projects. 

However, he discusses learning interactions in previous project phases. As here, he analyzes the case 

of two assets with compound options: each real asset comprises an exploratory option and a 

development option2. His model doesn’t apply to the petroleum exploration & development case 

because in Childs the development projects are mutually exclusive (only one can be implemented) 

and because the second asset can be developed without previous exploration (using only the 

information revealed with the correlated first exploratory project). In contrast with this paper, he 

considers only European type options and only endogenous uncertainty in each asset (with 

correlation), but not the exogenous market uncertainty. Childs considers the learning effect between 

the assets at the exploratory phase, when the exploratory project investments are sequential (Childs 

also analyses the parallel investment case). By using log-normal distributions (Childs, 1995) or 

normal distributions (Childs et al, 1998), the learning intensity is given by the square of correlation 

coefficient ρ2. Dias (2002, 2005a, 2005b) uses a more general learning measure, the expected 

percentage of variance reduction η2 (the correlation ratio), but for the Normal type distributions 

these measures are equal (ρ2 = η2 for Normal distributions).  

The optimal order for sequential investments must consider the learning effect of one asset over the 

other one, so that the first option to be exercised is not always the asset with highest payoff value. As 

pointed out by Childs  (1995, p.50), “may be preferable to develop a high variance project first, to 

maximize the uncertainty resolved even if the project has a slightly lower net benefit”. But in 

addition, for some probabilities distributions, there is asymmetric probabilistic learning effect 

(affecting the optimal ordering). That is, there is asymmetry in the conditional distributions in terms 

of learning effect (the relative learning of X | Y can be different of Y | X), so that we can even learn 

                                                 
1 See also the related paper of Childs & Ott & Triantis (1998). 
2 Childs uses different nomenclature: “development” instead of “exploratory” and “implementation” instead 
“development”. This paper uses the standard oil industry nomenclature. In addition, “exploratory” sounds more 
appropriate for the uncertainty reduction (learning) that characterizes the first investment phase. 



more with the lower variance asset3. In this regard, learning between two assets can be either 

symmetric or asymmetric, depending on the distributions.  

Because learning can be asymmetric, a good must be asymmetric for the general case, even being 

symmetric in some specific (and important) cases. This paper uses the theory of probabilistic learning 

measures and the recommended learning measure presented in Dias (2005a, 2005b), the expected 

percentage of variance reduction η2
X|Y (≠η2

Y|X in general), also known as correlation ratio. For the 

important cases of X and Y being both Normal distributions (as in Childs et al., 1998) or being both 

Bernoulli distributions (as here), η2
X|Y is symmetric and equal to the square of the popular correlation 

coefficient (ρ2), which is convenient for many applications. Appendix A presents a summary of the 

theory of learning measures and the recommended learning measure used in this paper. This theory, 

for example, supports the use of the correlation coefficient for learning with Bernoulli distributions. 

3 – A Simple Portfolio Case with Two Exploratory Assets: Learning Options and Synergy  

In this section is shown the role of probabilistic dependence between real assets in a portfolio is very 

different of the traditional portfolio theory for financial assets (Markowitz): here there is information 

revelation by sequential exercise of learning options, an active exploitation of dependence, whereas 

in financial portfolio theory the role of dependence is only for diversification purposes. We will show 

that, for learning purposes and in presence of optionality, probabilistic dependence has positive 

impact on portfolio value for both positive and negative correlations, whereas for diversification 

purposes low (even negative) correlation is much better than a higher or positive correlation. In 

addition, we show that positive correlation is desirable for synergy gains, again contrasting financial 

portfolio theory. The principle of diversification is valid for both financial and real assets portfolio, 

but in the latter case there are gains with learning and synergy that are not possible for the former.  

In this paper are used Bernoulli distributions for the chance factors of exploratory prospects, so that 

in this case we work with the symmetric learning measure ρ2 = η2 (see Dias, 2005a, 2005b). In the 

applications exist either positive correlation or negative correlation. A positive correlation application 

is presented in this paper (with addition to references to a hypothetic case of negative correlation).  

                                                 
3 Ex.: Let X and Y be discrete uniform distributions with scenarios X ~ U[- 4, - 2, 2, 4] and Y ~ U[4, 16]. Suppose Y = X2 
and note that Var[Y] > Var[X]. We learn much more by searching the true value of X (because we get also full revelation 
about the true value of Y) than by searching the true value of the higher variance Y (because X remains stochastic).  



A negative correlation application is illustrated in the following example, where two variables (X and 

Y) are chance factors modeled with Bernoulli distributions and with negative correlation (so that the 

success in X decreases the success chances of Y). In a P&D problem of a new drug, when searching 

the cause of a disease, X = {Hypothesis A} and Y = {Hypothesis B} are Bernoulli distributions (so 

that outcome 1 means that the hypothesis is true and 0 the hypothesis is false). In this kind of 

application, if we learn that X is equal to 0 (false) in many cases we can say that this information 

increases the chance of hypothesis B be the real disease cause (i.e., Pr[Y = 1 | X = 0] > Pr[Y = 1]), 

indicating negative correlation between X and Y. In the extreme case of perfect learning (or full 

revelation), we have ρ = − 1 if {Hypothesis B} =  {other hypothesis than Hypothesis A}4. This 

example illustrates both that we can learn also with negative correlation and the importance of 

Bernoulli distributions interactions for other applications than petroleum exploration.  

Another simple example that learning is increasing in ρ2 (rather than ρ) is for Normal distributions, 

as in Childs et al (1998). If X ~ N(mx, σx
2) and Y ~ N(my, σy

2), then it is known that the conditional 

distribution is also Normal and given by Y | X = xi ~ N(my + ρ σy ( xi − mx) / σx, σy
2 (1 − ρ2)), i.e, the 

variance of the conditional (or posterior) distribution, σy
2 (1 − ρ2), is lower as higher is ρ2, and the 

maximum learning here (conditional distribution with zero variance, the full revelation case) occurs 

for both extreme correlation cases, ρ = + 1 and ρ = − 1. So, for learning purposes, the correlation 

signal is not especially important (learning is increasing with ρ2, not with ρ). 

In addition, contrasting the financial portfolio theory, positive correlation between real assets has also 

positive effects on real assets portfolio value in case of synergy5 between the assets. Negative 

correlation has negative effect on synergy because decreases the probability of double success (in 

favor of one success and one failure). In other words, the correlation signal matters for synergy effect 

(in contrast with learning effect). We illustrate synergy here in terms of economy of scale for the 

development investment when developing simultaneously two neighboring oilfields (in case of two 

successes from exploratory drilling), sharing a common infrastructure. In other applications, synergy 

could be specified in terms of economy of scope6.  

                                                 
4 A necessary condition for full revelation of Y with the information on X, with X and Y being Bernoulli distributions 
and with negative correlation is complementary prior success probabilities, e.g., if X ~ Be(0.6) ⇒ Y ~ Be(0.4) for full 
revelation be feasible. For positive correlation, the necessary condition is that the Bernoulli distributions be exchangeable. 
5 Synergy between two assets means that the joint two assets value is higher than the sum of individual asset values. 
6 Economies of scope refer to efficiencies primarily associated with demand-side changes, such as increasing or 
decreasing the scope of marketing and distribution, of different types of products (Wikipedia). When many real options 



In this section is considered only the learning and synergy effect as function of correlation in a 

portfolio of real options. Later we’ll include the exogenous market uncertainty and the option to 

defer. For while, we can imagine that the real option is expiring (it’s a now-or-never opportunity). 

Consider the following example (Dias, 2004 and 2005). An oil company owns a simple exploratory 

portfolio comprising the rights over a tract with two exploratory prospects. For each prospect, the 

value of the drilling option exercise is the expected monetary value (EMV)7, given by: 

EMVi  =  − IW  +  [CFi . NPVi],              i = 1, 2                           (1) 

 Where IW is the drilling investment in the wildcat well (option exercise price), CFi is the chance 

factor about the existence of an oilfield for the prospect i, and NPVi is (conditional to exploratory 

success) the net present value of the oilfield development from the prospect 2 success8. The chance 

factor is the parameter with technical uncertainty with the simplest probability distribution – the 

Bernoulli distribution, which has two scenarios (1 = success and 0 = failure) and one parameter (p) 

named success probability. So, we use CF ~ Be(p) to denote this Bernoulli distribution. The expected 

value of a Bernoulli distribution is the success probability, i.e., E[CF] = p. For simplicity, consider 

that the exploratory drilling is instantaneous, in order to focus on the main paper issues. 

Consider initially that the two prospects are symmetric, i.e., they have the same parameters and so the 

same EMV. Assume the numerical values IW = 30 million $, E[CF] = p = 30% and NPV = 95 million 

$ for both prospects. So, the EMV is negative: 

EMV1  =  EMV2  = − 30 + [0.3 x 95]  =  − 1.5 million $ 

Apparently this two real assets portfolio is worthless. Indeed, if the prospects in this portfolio were 

independents, the two-prospects portfolio value would be zero. However, the portfolio value can be 

strictly positive if the prospects are dependent. Suppose that these two exploratory prospects are in 

the same geologic play9, so that the prospects are dependent with positive correlation. If these 

prospects have positive correlation, in case of success in one prospect, the success probability p from 

the second prospect chance factor (CF2) must be revised upward (to CF2
+) and in case of failure the 

                                                                                                                                                                    
draw upon a common pool of capabilities (or resources), a firm in several cases can exploit economies of scope with 
simultaneous option exercise (and/or learning with sequential option exercise strategy). 
7 EMV is used in exploration economics and it is a concept analog to NPV (net present value). 
8 Later in this paper, when considering the option to defer, instead the NPV we’ll use the development option value.  
9 The prospects share common geological hypotheses, e.g., existence (or not) of oil migration from the source rock to that 
area with presence of reservoir rock and synchronism for the sequential geologic events.  



probability of success must be revised downward (to CF2
−). Figure 1 illustrates this learning process 

with the information revelation generated by the first option exercise.  

 
Figure 1 – Effect of the Well 1 Signal on the Chance Factor CF2 

After the signal S1 (information revelation by drilling the prospect 1), Figure 1 shows two updated 

scenarios for the 2nd prospect chance factor CF2: the good news case, p+ = E[CF2 | S1 = CF1 = 1], and 

the bad news case, p− = E[CF2 | S1 = CF1 = 0], so we have a simple two-scenario discrete distribution 

of conditional expectations, where the conditioning is the information revelation. The distributions of 

conditional expectations are here named revelation distributions, and a set of properties for these 

distributions is presented in Dias (2002, 2005a, 2005b) and summarized in the Appendix B.  

The CF2 updating process intensity is function of the degree of dependence (correlation) between the 

prospects and will be quantified soon. The probability of a positive information revelation (q) is the 

success probability for the well 1. In this symmetrical example, both prospects have the same 

unconditional success probability (p), so that p = q. In this case these random variables (r.v.) are 

called exchangeable. For notational convenience, considering that the Bernoulli distribution has only 

one parameter that is also its expected value, instead p and q we use CF1 (= p) and CF2 (= q), 

respectively, for the success probabilities (and so CF2
+ = p+, etc.). 

In this example consider that the dependence degree makes CF2
+ = 50% in case of success for the 

well 1. Probabilistic consistency, given by the law of iterated expectations, demands that CF2
− = 

21.43 %. In case of bad news (i.e., using CF2
− in the eq. 1), the EMV2 is even worse than the − 1.5 

million obtained with CF2. But it is an option so that the prospect 2 will not be drilled in case of bad 

news and the value of the prospect in this scenario is zero. However, in case of good news the 



prospect 2 becomes attractive (EMV2
+ = 17.5 > 0) so that the drilling option is exercised in case of 

good news. Hence, the portfolio value is: 

EMV1 + E[option(EMV2)]  =  − 1.5 + [(0.7 x zero) + (0.3 x 17.5)]  =  +  3.75 million $ 

A very different value when compared with the case of independent prospects. Note that the positive 

result is due to both the optional nature of investment drilling and the information revelation 

generated by the first drilling. Thanks to the assets optional nature, the portfolio value is higher as 

higher is the dependence between the prospects. Hence, the real option value a portfolio of assets 

with technical uncertainty is an increasing function of the dependence degree between these assets, 

that here is given by the correlation coefficient ρ (or its square ρ2). 

Consider two Bernoulli random variables, one named the variable of interest with initial chance 

factor CF2 and the other named signal with chance factor CF1. The numbers here is because the 

prospect 1 will be drilled first, generating signal for the prospect 2 (that learns with prospect 1 option 

exercise). The updating equations for chance factor in the general case are presented below. 

CF2 
+ =  CF2  + 1

2 2
1

1 CF  CF  (1 CF )   ρ
CF
−

−                                         (2) 

CF2 
− =   CF2  − 1

2 2
1

CF  CF  (1 CF )   ρ
1 CF

−
−

                                       (3) 

For the particular case of exchangeable random variables, these equations simplifies to: 

CF2 
+   =   CF2  +    (1 – CF2)  ρ                                                            (4) 

CF2 
−   =    CF2   −  CF2  ρ                                                                     (5) 

That is, after an information revelation with learning intensity ρ, the difference between the revealed 

chance factors CF2 
+ − CF2 

− is just the correlation coefficient ρ, if the Bernoulli distributions are 

interchangeable. So, in the numerical example the correlation used was 50% − 21.43 % = 28.57 %. 

The multivariate distribution literature shows that are necessary limits of consistence for these 

distributions, i.e., given the marginal distributions, it is not possible any dependence intensity. For 

example, for the example numbers is not possible the case of ρ = − 1 (we get a negative value if 

using eq. 4 with this value of ρ). These limits of consistence are named Fréchet-Hoeffding limits and 

for Bernoulli distributions the correlation coefficient has the following limits (Joe, 1997, p.210): 



2 1 2 1

2 1 2 1

CF  CF (1 CF ) (1 CF )Max  ,  
(1 CF ) (1 CF ) CF  CF

 − − − − − −  
   ≤    ρ    ≤   

                                                         . 

≤   2 1 2 1

2 1 2 1

Min{CF  , CF } (1 Max{CF  , CF })
Max{CF  , CF } (1 Min{CF  , CF })

−
−

      (6) 

Now we focus synergy, which is possible in case of double success after drilling both prospects 

thanks to scale economies with joint development investment. We’ll specify synergy in the 

development investment equation, which is function of the reserve volume. In order to do this, we 

need work out the NPV function obtained with the development option exercise. 

Let the development option exercise payoff for the asset i (NPVi) be function of the current long-run 

oil price P. In addition let the NPVi be also function of both the reserve volume (B, as the number of 

barrels) and the reserve quality (q, related with the productivity of the reserve and other effects), 

which are deterministic here. Let us consider a simple parametric model named “Business Model”10 

in which the NPVi obtained with the development option exercise is: 

NPVi = qi Bi P – IDi                                                              (7) 

Where IDi is the development investment for the oilfield i, conditional to success when exercising the 

option to drill the exploratory prospect i. The break-even price (P so that NPV = 0) is Pbe = ID/q B, 

that is the threshold for exercising the development option in this now-or-never case. 

The adequate development investment is function of the reserve volume B. Larger volume means 

larger processing capacity, larger pipeline diameter, larger quantity of development wells, etc. The 

investment is not proportional to B, but empirical studies show that a linear function is a good 

approximation for this function, with fixed and variable (with B) factors: 

 IDi(B)   =   kf +  kv Bi                                                             (8) 

For the numerical example we’ll use the factors kf = 180 and kv = 2.5, with B in millions of barrels 

and IDi in millions of US$. The index i denotes the asset number (here 1 or 2).  

In case of joint investment, we have a synergy gain because it is possible economy of scale by 

placing a single production unit with higher processing capacity, sharing the same oil and gas 

pipelines (but with larger diameter). This could suggest applying eq. (8) for the joint reserve volume, 

                                                 
10 See a detailed discussion of this and alternative payoff models at www.puc-rio.br/marco.ind/payoff_model.html  



B1 + B2. However, depending on the distance between the oilfields, the flowlines from the wells to 

the production platform increases so that synergy gain exists but it is not so high. Hence, we adopt a 

synergy factor γsyn, a number between 0 and 1, representing the synergy intensity: 0 is for no synergy 

and 1 is for full synergy (here, like a single oilfield with volume of B1 + B2). The equation below 

gives the synergy effect over the joint investment of two oilfields. 

ID1+2   =   ID1 + ID2 − γsyn [ID1 + ID2  − (kf +  kv (B1 + B2))]                            (9) 

When applying this joint investment, in order to calculate the joint development NPV we use an 

average economic quality q1+2, weighted by the volume of each individual reserve, and the total 

volume B1 + B2 in order to calculate the total benefit: 

                       NPV1+2   =   q1+2 (B1 + B2) P  − ID1+2   =   (q1 B1 + q2 B2) P  − ID1+2                  (10) 

For the numerical example, let the (current expectation on long-run) oil price be 30 $/bbl, the 

economic quality for both oilfields q1 = q2 = 12%, B1 = B2 = 250 million bbl. So, each isolated NPV 

values 95 million US$. Considering a synergy intensity with factor γsyn = 0.5, in case of joint 

development we get a NPV1+2 = 280 million $ (> NPV1  + NPV2  = 2 x 95 = 190), an expressive gain. 

The synergy effect is only possible if we get a double success when exercising the option to drill the 

exploratory prospects. Denote psyn this probability of double success. This probability (and so the 

expected synergy gain) is increasing with the correlation coefficient as shown by the following 

equation (Dias, 2005a or Kocherlakota & Kocherlakota, 1992, p.57): 

syn 1 1 2 2 1 2prob    =   ρ CF  (1 CF ) CF  (1 CF )     CF  CF  − − +                       (11) 

Proposition 1:  Consider the two exploratory prospects portfolio presented in this section, with 

chance factors given by Bernoulli distributions with correlation coefficient ρ. The exploratory 

investment (prospect drilling) is optional. In case of exercise and if the outcome is “success” (oilfield 

discovery), the firm has the option to develop the oilfield. In case of double success is possible a joint 

development exercise with investment synergy given by the synergy factor γsyn > 0. Then: 

a) The learning gain from the first exploratory option exercise is increasing (or strictly non-

decreasing) with the square correlation coefficient ρ2. 

b) The expected synergy gain with double exploratory option exercise is increasing (or strictly 

non-decreasing) with the correlation coefficient ρ. 



Proof: a) The portfolio value with the first exploratory option exercise is EMV1 + E[option(EMV2)]. 

The function option(EMV2) = Max[EMV2, 0] is convex and, by the Jensen’s inequality, 

E[option(EMV2)] > option(E[EMV2]) and this effect is higher as higher is the uncertainty (variance) 

of option(EMV2), which here has two scenarios, EMV2
+ (using CF2

+) and EMV2
− (using CF2

−). 

Because the distance between CF2
+ and CF2

− (and so between EMV2
+ and EMV2

−) is increasing with 

ρ2 (eqs. 2 and 3) for the same scenario probabilities (CF1 and 1 − CF1, respectively), the variance of 

option(EMV2) is increasing with ρ2. So, the learning/Jensen’s inequality effect is increasing with ρ2. 

b) Synergy gain does not depend on correlation, but it occurs only in case of double success. So, the 

expected synergy gain is increasing with the probability of double success that is increasing with ρ 

(eq. 11). Hence, the expected synergy gain is increasing with ρ.                                                         � 

This proposition is illustrated in several numerical computations, with the charts being showed 

below. Figure 2 isolates the learning and optionality issues in function of the correlation coefficient 

ρ, that is, does not consider the synergy effect. 

 
Figure 2 – Two Prospects Portfolio with Positive Correlation and Without Synergy 

Without options11, the portfolio value is negative (- 3 million $) and independent of correlation. With 

optionality, learning has value and is increasing (strictly non-decreasing) with correlation. 

                                                 
11 There are cases in petroleum industry where the exploratory drilling is obligatory, due to the “minimal exploratory 
investment commitment” from the track acquisition bidding process. This obligation can be one or both wells. 



 The value of the two-exploratory compound options portfolio Π1+2 including learning and synergy 

(in addition to the full optionality) for this expiring opportunity is the sum of EMV1 with EMV2 with 

options, synergy and learning considering that the prospect 1 is drilled first (in case of exercise) and 

it is given by the following intuitive equation. 

Π1+2  = max{0, − IW + CF1 max[NPV1, − IW + CF2
+ NPV1+2 + (1 − CF2

+) NPV1 ] + 

                                  + (1 − CF1) max[0, − IW + CF2
−  NPV2 ]}                  

 Figure 3 illustrates this case including the synergy effect. Note that even without options there is an 

increasing synergy gain with the correlation, which increases the chance of double success. 

 
Figure 3 - Two Assets Portfolio with Learning and Synergy: Positive Correlation & Options 

In order to complete the theoretical analysis, imagine that is possible negative correlation. Although 

it is not logic in this petroleum application, we pointed out one real life class of problems where 

negative correlation is possible/logic. However, as pointed out before, it is not possible the use of any 

ρ given the (marginal) Bernoulli distributions with parameters CF1 and CF2, because ρ must respect 

the Fréchet-Hoeffding limits (ineq. 6). Figure 4 shows this exploratory example if is allowed negative 

correlation up to the consistent limits of Fréchet-Hoeffding. 



 
Figure 4 - Two Prospects Portfolio with Positive and Negative Correlations 

It is opportune to set the following proposition about the extreme case of learning, the full revelation 

case, which according our learning theory (see Appendixes A and B) occurs in case of ρ2 = 1, i.e., 

with either ρ = + 1 or ρ = − 1.  

Proposition 2: Consider the two assets portfolio with chance factors given by Bernoulli distributions 

with correlation coefficient ρ. A necessary condition for maximum learning (full revelation), i.e., for 

ρ2 = 1, depends on the correlation coefficient signal and is given by: 

a) If the correlation coefficient is positive, the necessary condition for maximum learning is the 

Bernoulli distributions are exchangeable, i.e., with equal success probabilities (CF1 = CF2). 

b) If the correlation coefficient is negative, the necessary condition for maximum learning is the 

Bernoulli distributions are complementary, i.e., with success probability of one distribution 

equal to one less the success probability of the other (CF1 = 1 – CF2). 

Proof: By inspection of the inequality for the correlation coefficient, eq. (6).                                     �  

Hence, the only case where is allowed all range of correlation coefficient (from –1 to + 1) is when the 

marginal Bernoulli distributions are simultaneously exchangeable and complementary, i.e., for CF1 = 

CF2 = 50%. We work a numerical example with this modified success probabilities in order to see a 

chart with the full range of ρ with learning. This is presented in the Figure 5 (case without synergy) 

and in the Figure 6 (case with synergy).   



 
Figure 5 - Two Prospects Portfolio for CF1 = CF2 = 50% without Synergy 

 

 
Figure 6 - Two Prospects Portfolio for CF1 = CF2 = 50% with Synergy 

Figure 7 presents the same case of Figures 5 and 6, but in the same chart in order to compare all the 

effects (synergy, learning & optionality). 



 
Figure 7 - Two Prospects Portfolio for CF1 = CF2 = 50% with and without Synergy 

With these charts is clear the Proposition 1, i.e., that learning is increasing with ρ2, not with ρ (the 

correlation signal does not matter), whereas synergy is increasing with ρ (the correlation signal does 

matter). In the next section is presented the option to defer for the compound exploratory + 

development petroleum asset, including the discussion of some practical portfolio aspects, while in 

the section 5 we interact learning, synergy and option to defer compound petroleum options.   

4 – Portfolio of Real Assets and the Option to Defer  

 The option to defer has value in presence of an exogenous market uncertainty that here is 

represented by the long-run oil price P, which follows a geometric Brownian motion (GBM): 

dP  =  α P dt  +  σ P dz                                                  (12) 

Where α being the drift, σ the volatility and dz is the Wiener increment. Let δ be the oil price (net) 

convenience yield estimated from the futures market.  

Consider that this option is finite, i.e., there is a legal time to expiration regulated by a governmental 

agency. Following the usual contingent claims steps (build a risk-free portfolio, apply the Itô’s 

Lemma, etc., see, e.g., Dixit & Pindyck, 1994), the value of the development option R(P, t) while 

alive (not exercised) is governed by the following stochastic partial differential equation (PDE): 
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The optimal exercise conditions are presented as boundary conditions of this PDE, which depends on 

the development asset characteristics such as qi, Bi, IDi for development option Ri, being i = 1 or 2, 

depending on it is the asset number 1 or the asset number 2. In case of joint development (with 

synergy gain), the option to develop is denoted by R1+2 and the joint investment is ID1+2. In this 

section we focus only one exploratory asset (in the next section we’ll need these subscripts to denote 

the different assets). 

Let P* be the threshold (or critical price) for development decision, i.e., at P* is optimal the 

immediate option exercise developing the oilfield. The boundary conditions, including optimality 

conditions, are standard in real options literature (e.g., see Dixit &Pindyck, 1994). 

• If P = 0,     R(0, t) = 0                                                                                                         (14) 

• If t = T,     R(P, T) = max[NPV(P), 0] = max[q B P – ID, 0]                                            (15) 

• If P = P*,     R(P*, t) = NPV(P*)  =  q B P* – ID                                                               (16) 

• If P = P*,     
P

t) R(P*,
∂

∂  = q B                                                                                             (17) 

This real options problem is solved with numerical methods like finite differences or analytical 

approximations, which results in both the option value R(P, t) and the optimal decision rule given by 

the threshold curve P*(t). 

Denote the exploratory option value E(P, t; CF) to drill the exploratory prospect as function of the 

state variables oil price (P) and time (t), highlighting the parameter chance factor CF. Again using the 

contingent claims method, we obtain a similar PDE, but for the exploratory option E(P, t; CF). 
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As for the development option, there are four boundary conditions for the PDE. But now we shall 

consider the EMV equation (see eq. 1) when exercising the option to invest by drilling the 

exploratory prospect. Let P** be the optimal exercise threshold for the exploratory option. Then: 

• If P = 0,            E(0, t) = 0                                                                                                   (19) 

• If t = T,            E(P, T) = max[− IW + CF (q B P – ID), 0]                                                 (20) 



• If P = P**,        E(P**, t) = − IW + CF (q B P** – ID)                                                        (21) 

• If P = P**,      
P

t) ,E(P
∂

∂ **  = CF q B                                                                                   (22) 

Again this PDE is solved with numerical methods or analytic approximations. Equations 21 and 22 

are not obvious because we are saying that when we exercise the exploratory option the development 

option is already optimal to be immediately exercised, in case of exploratory success. In other words, 

we are saying that P** ≥ P*. This issue is formalized with the following proposition. 

Proposition 3: A necessary condition for immediate option exercise of the exploratory prospect is 

the underlying development option (conditional to exploratory success) be “deep-in-the-money” with 

positive probability, i.e., in case of exploratory success must be optimal also the immediate exercise 

of the development option. This implies that is necessary that P** ≥ P*. 

Proof: There are at least two ways to see this. First, it is known that a necessary condition to exercise 

earlier (t < T) an American call option is that the underlying asset pays a positive dividend. This is 

proved by arbitrage and can be found in good books on option pricing theory. In this case, if the 

development option R(P**, t) is not “deep-in-the-money” for optimal immediate exercise, then this 

asset does not generate dividends (cash-flows). Only if R(P**, t) is “deep-in-the-money” is that this 

option generates “cash flow” because by exercising the development option it transform into an asset 

that pays dividends (cash flow from the production). Other way to see this is: if R(P**, t) is not 

“deep-in-the-money”, by exercising the exploratory option E(P**, t) we get, in the best scenario 

(success), the option R and we shall wait because it is not optimal its exercise. In this case, we could 

be better off if we wait a small interval dt instead exercising the option E, because we delay the 

investment expense IW, gaining r IW dt when compared with the alternative of immediate exercise of 

option E, without losing any benefit (dividend) from the possibility to have the alive option R. So, it 

is better to delay the exploratory option exercise if the underlying development option is not “deep-

in-the-money” for optimal immediate exercise in case of success. This implies that we must have the 

necessary condition P** ≥ P*.                                                                                                               � 

For the theoretical case of an exploratory option with more than one development condition (this case 

could occur in P&D applications), a necessary condition for the optimal exploratory option exercise 

is that at least one development option be “deep-in-the-money” for optimal immediate exercise and 

with positive success probability to occur this development option in case of exploratory option 

exercise. 



In our simple model we consider that the reserve volume and the economic quality are deterministic. 

A more realistic (but more complex) case could consider them as stochastic so that the exploratory 

drilling will reveal information about B and q, revising our preliminary estimates for these 

parameters. In this case, although we exercise our exploratory option expecting that the development 

option is “deep-in-the-money” in case of success, we can face the situation of exploratory success but 

bad news in terms of information revelation about B and q. So, its possible to exercise an exploratory 

option, obtaining success (existence of petroleum), but postponing optimally the development 

depending on the revealed scenarios of B and q. 

A more practical problem regarding the option to defer development is portfolio planning. Oil 

companies need perform a middle term forecast of resources demand in order to exercise optimally 

its portfolio of assets at the right time without resources constrains that decreases the portfolio value. 

For example, rigs and special ships (to launch pipelines and/or flowlines) demand specific contracts 

where each resource acts in a set of projects. The contracts in general are not project specific. So, if a 

development project is not “deep-in-the-money”, the oil company needs an idea about the probability 

of this option to become “deep-in-the-money” until the legal option expiration and, conditional to any 

exercise later, what is the expected exercise delay for each project. With this information, the oil 

company can plan new contracts (and the contracts duration), human resources demand in the next 

years, financing demand in next years, etc. 

In order to do this, for each project, the manager shall watch the market evolution and shall be with 

the threshold curve for optimal immediate investment in her/his hands. The manager will follow this 

threshold for the development investment decision to be consistent with real options theory.  

So, in order to estimate both the probability of option exercise and the expected conditional exercise 

time, we can perform a Monte Carlo simulation of the stochastic variables (here the oil prices, which 

follows a GBM) so that when this simulated price reaches the threshold line we consider that the 

option is exercised. However, in contrast with the option valuation case, we use the real stochastic 

process for the market (price P) uncertainty, not the risk-neutral simulation. The reason is that the 

manager will observe the real process, not the risk-neutral one, to checkout the threshold chart for 

decision purposes. The risk-neutral approach is used in option valuation because we don’t know (or it 

is very complex to know) the risk-adjusted discount rate for the option. With the risk-neutral 

simulation, we can valuate the option by using the risk-neutral discount rate to calculate the present 

value for all simulated paths with exercise. This change of measure is well known (see Girsanov 



Theorem in any good mathematical finance book). If hypothetically we know the option discount 

rates (that changes with the state of the nature), we could use real simulation and these risk-adjusted 

discount rates. For the probability of option exercise and expected exercise time, doesn’t make sense 

to proceed with a change of measure, as in the case of option valuation.  

So, for the probability of option exercise and expected exercise time we shall use real stochastic 

process simulation associated with the threshold curve obtained from the option valuation process. In 

this case, contrasting the risk-neutral approach, the GBM drift (α) matters: as higher is the drift, as 

higher is the probability of option exercise and lower is the conditional expected exercise time.   

5 – Combined Effects on Exploratory Assets Portfolio: Learning, Synergy and Option to Defer   

In this section is incorporated the option to defer effect, for both the exploratory options and the 

development options, into a portfolio of two correlated exploratory assets.  

The synergy occurs only in case of two successes when exercising the exploratory option. The 

development option R1+2(P, t) of joint development is given by a PDE and the suitable boundary 

conditions. The PDE is the same of eq.(13), as well as the first boundary condition (eq. 14). The 

remaining boundary conditions for the joint development option R1+2(P, t) are listed below, 

remembering that the joint oilfield development has a joint investment ID1+2(B1, B2, γsyn), given by the 

eq.(9), which considers the synergy effect, and a exercise payoff given by the eq.(10).    

• If t = T,     R1+2(P, T) = max(q1+2 (B1 + B2) P – ID1+2, 0)  = max(NPV1+2(P, T), 0)         (23) 

• If P = P*
1+2,     R1+2(P*

1+2, t) = q1+2 (B1 + B2) P*1+2 – ID1+2  =  NPV1+2(P*
1+2, t)               (24) 

• If P = P*
1+2,    1+2 1+2

*R (P , t)
P

∂
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  =  q1+2 (B1 + B2)                                                                  (25) 

 

Where P*1+2 is the threshold for the optimal joint development option exercise. If the oilfields are 

equal, with the same individual development threshold P*, it is easy to see that P*1+2 ≤ P*, i.e., 

synergy speeds up the development. If the oilfields are different, say P1* < P2*, then it is easy to see 

that in case of P*1+2 < P1* < P2* we wait while P < P*1+2 and exercise the joint development option 

otherwise. In addition, if P1* < P*1+2 < P2*, the “wait and see” policy can be optimal even if the 

current prices P ∈ [P1*, P*1+2) in case of R1+2(P, t) ≥ NPV1 + R2(P, t). In this case, depending on the 



problem parameters, is possible to appear disconnected exercise sets12, i.e., interval of P values where 

is optimal exercise only the oilfield 1 development, followed by a interval of P where waiting is 

optimal (intermediate waiting region) followed by a interval of P where is optimal to exercise the 

joint oilfield development option R1+2.   

Figure 8 illustrates the synergy effect on the two-oilfields portfolio, by comparing the arithmetic sum 

of two development options (R1 + R2, without synergy effect) with the joint development option R1+2 

that considers the synergy effect, for different synergy factors γsyn. The function R1+2(γsyn) is non-

linear and convex with γsyn, although the chart scale doesn’t permit see this clearly.  

 
Figure 8 – Option to Develop and Synergy Effect on Two-Oilfields Portfolio 

In the above figure the value of the prospects are equal and in this case R1+2 ≥ R1 + R2 for all value of 

the synergy factor. However, if the prospects have asymmetric values, it is possible R1+2 < R1 + R2 

for low synergy factor values. In this case, the oilfield 2 can “contaminate” the joint development 

option when single R1 exercise can be better. Figure 9 shows an example: if the prospect 2 has only 

the half of reserve volume B2 of the previous case, for low values of γsyn, we see that R1+2 < R1 + R2. 

                                                 
12 See the discussion of disconnected exercise sets/intermediate waiting regions in the context of optimal scale of a single 
project development in Dias (2004), Dias & Rocha & Teixeira (2003) and Décamps & Mariotti & Villeneuve (2003).  



 
Figure 9 - Option to Develop and Synergy Effect on Asymmetric Two-Oilfields Portfolio 

The next backward step for portfolio valuation of these correlated two-compound real options is to 

analyze the exploratory options and the learning effect, given the synergy opportunity in case of 

double success presented above and considering the option to wait for better market conditions.  

Figure 10 restates the petroleum two-asset portfolio example but including the option to defer. The 

format is a decision-tree, but it reflects only a specific point in time. At each instant we have the same 

decision-tree, but with different values for the options and exercise payoffs. 



 
Figure 10 – Two Exploratory Prospects Portfolio Including the Option to Defer 

The value of the prospect i exploratory option in presence of a portfolio of exploratory assets is given 

by the value of this prospect isolated plus the portfolio effect of adding this asset on the portfolio, i.e., 

learning and synergy effects: 

Ei portfolio = Ei isolated + expected portfolio effect of adding prospect i 

In all cases, the PDE for the exploratory option E(P, t) is the same of eq.(18), only the boundary 

conditions will change in order to consider the different cases showed in Figure 10. The PDE is the 

same because it depends only on risk-neutral parameters from the stochastic process of P and if the 

derivative E(P, t) generates or not cash flows (E does not generate cash flow in this case). In addition, 

the first boundary condition (eq. 19) is the same for all cases. The remaining boundary conditions are 

presented below for each exploratory option case showed in the Figure 10, capturing the specific 

learning and synergy effects of each case.  

We start backwards in the Figure 10, presenting first the payoff from exploratory option exercise of 

prospect 2 in case of good news from the first exploratory option exercise, i.e., EMV2
+ + portfolio 

effect (Figure 10, top branch). The EMV2
+ already incorporates the learning effect (learned chance 



factor is CF2
+) and the synergy effect is captured under the rubric “portfolio effect”. Hence, the 

expected payoff of this exploratory option exercise, EMV2
+ + portfolio effect, is: 

EMV2
+ + portfolio effect  =  − IW + CF2

+ max{(R1+2 – R1), R2}                       (26) 

In words, exercising the prospect 2 exploratory option we spend IW and with probability CF2
+ we 

have success obtaining either the joint development option R1+2 and giving up the isolated 

development option R1, if R2 < R1+2 − R1, or obtaining the isolated development option R2, if R2 > 

R1+2 − R1. In case of failure, with probability 1 − CF2
+, we don’t obtain any additional benefit (in this 

branch is already guaranteed the portfolio payoff R1 due to the first success). Equation (26) is the 

exercise payoff of E2(P, t; CF2
+). As seen before, the necessary condition for earlier exploratory 

option exercise is the underlying development option (here R1+2 and/or R2) be “deep-in-the-money”. 

So, under this necessary optimal condition, eq.(26) becomes: 

EMV2
+ + portfolio effect  = 

=  − IW + CF2
+ max{[NPV1+2  − R1]  if R1+2 = NPV1+2,  NPV2  if R2 = NPV2}         (27)  

That is, the eq.(26) conditional to R1+2 = NPV1+2 and/or R2 = NPV2, where NPV1+2 is given by 

eq.(10). With the conditionals inside eq.(27), we prevent cases where waiting is optimal even with 

either R1+2 = NPV1+2 or R2 = NPV2. For example, the case of R1+2 = NPV1+2 but NPV1+2 − R1 < NPV2 

< R2 or the case of R2 = NPV2 but R1+2 − R1 > NPV1+2 − R1 > NPV2. 

Hence, the exploratory option after learning good news, E2(P, t; CF2
+), is given by the PDE, eq.(18) 

and, in addition to eq.(19), with the following boundary conditions that consider synergy effect: 

• If t = T,   

E2(P, T; CF2
+)  = max{0, − IW + CF2

+ max[(NPV1+2 − max(NPV1, 0)), NPV2]}            (28) 

• If P = P2
**, R1+2 = NPV1+2 and NPV1+2 > R1 + R2,   

E2(P2
**, t; CF2

+) = − IW + CF2
+ (NPV1+2  − R1)                                                              (29a) 

• If P = P2
**, R2 = NPV2 and NPV2 > R1+2 − R1,   

E2(P2
**, t; CF2

+) = − IW + CF2
+ NPV2                                                                            (29b) 

• If P = P2
**, R1+2 = NPV1+2 and NPV1+2 > R1 + R2,    
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• If P = P2
**, R2 = NPV2 and NPV2 > R1+2  − R1,   
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Note that there are two mutually exclusive cases for the threshold P2** : a necessary condition to 

optimal exercise of E2 is that in case of success we don’t wait optimally. We must optimally exercise 

either the joint development option R1+2 or the isolated oilfield development option R2. The solution 

of E2(P, t; CF2
+) is obtained by standard numerical methods like finite differences. 

The cases that appear after the prospect 1 failure outcome (“dry hole”), the bottom right tree showed 

in Figure 10, are easier to model because there is no synergy effect anymore, just the prospect 2 

exploratory option E2(P, t; CF2
−), which learned the bad news by updating the chance factor CF2 to a 

lower success probability CF2
−. So, we can use the eqs.(18)-(22) with CF2

−. Without the synergy 

possibility, the value of the development option R2 is the standard real option given by eqs.(13)-(17). 

A little bit more complicated is the case of E1(P, t; CF1) with additional benefits of synergy and 

learning to take into account in order to exercise or not the first exploratory option, showed in the 

Figure 10 (bottom-left). The intuition says that E1(P, t; CF1) + portfolio effect > E1(P, t; CF1) 

isolated. In addition, it is intuitive that we shall exercise E1 earlier (lower threshold) in presence of 

portfolio effect than without these effects. The reason is that the exercise payoff is more valuable 

because there are valuable learning effect and valuable synergy effect (with probability CF1) in 

addition to its payoff. Before setting E1, its exercise payoff equation is presented below. 

EMV1 + portfolio effect  =  − IW  +  CF1 (q1 B1 P – ID1) + portfolio effect                    (31)   

Where “portfolio effect” is the effect of first prospect outcome over the remaining portfolio (i.e., 

prospect 2), which is given by: 

portfolio effect  = CF1 [E2(P, t; CF2
+)] + (1 − CF1) [E2(P, t; CF2

−)]  −  E2(P, t; CF2)          (32) 

In words, the portfolio effect is the expect value of the prospect 2 exploratory option value with 

information revelation less the prospect 2 exploratory option value without this information. So, it is 

the net gain with new information over the option E2, the learning effect. In addition, it also includes 



the synergy effect in the E2(P, t; CF2
+) term, which is given by eq. (18) and includes the synergy 

effect at the boundary conditions, given by eqs. (28)-(30b). 

Finally, we set the prospect 1 exploratory option value, E1(P, t; CF1), which considers the portfolio 

effect over the prospect 2. It is given by the PDE, eq. (18) and, in addition to eq.(19), by the 

following boundary conditions (OBS: all NPV and options R are functions of P): 

• If t = T,   

E1(P, T; CF1)  = max[0,  − IW + CF1 NPV1 + CF1 E2(P, T; CF2
+) + (1 − CF1) E2(P, T; CF2

− )  −  

− E2(P, T; CF2) ]                               (33) 

Where: E2(P, T; CF2
+)  =  max{0, − IW + CF2

+ max[(NPV1+2 − max(NPV1, 0)), NPV2]}   ;  

  E2(P, T; CF2
− )  = max{0, − IW + CF2

−  NPV2}   and   E2(P, T; CF2)  = max{0, − IW + CF2  NPV2}    

• If P = P1
**, R1+2 = NPV1+2 and NPV1+2 > R1 + R2,   

             E1(P1
**, t; CF1)  =  − IW + CF1 [− IW + CF2

+ NPV1+2 + (1 − CF2
+) R1] +  

+  (1 − CF1) E2(P1
**, t; CF2

− ) – E2(P1
**, t; CF2)         (34) 

Where E2(P, t; CF2
−) and E2(P, t; CF2) are given by eqs. (18)-(22), without portfolio effect. 

• If P = P1
**, R1 = NPV1 and NPV1 > R1+2 − R2,   

E1(P1
**, t; CF1)  =  − IW + CF1  NPV1 + CF1 E2(P1

**, t; CF2
+) + (1 − CF1) E2(P1

**, t; CF2
− )  −  

−  E2(P1
**, t; CF2)                                                                                      (35) 

• If P = P1
**, R1+2 = NPV1+2 and NPV1+2 > R1 + R2,   
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• If P = P1
**, R1 = NPV1 and NPV1 > R1+2 − R2,   
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The boundary condition at expiration, eq.(33), is just the choice between the prospect 1 exploratory 

option exercise considering the portfolio effect, i.e., eqs. (31) and (32), and no exercise (giving up 

definitely this opportunity). Eq.(34) is the value matching condition at the optimal exercise of E1, 

considering that the joint development (which occurs with probability CF1 CF2
+) option is “deep-in-

the-money”. In this case, is also optimal the immediate exercise of E2 if the outcome from E1 exercise 

is “success”. Eq.(35) is the value matching condition at the optimal exercise of E1, considering that 

the individual development option R1 is “deep-in-the-money” and is higher than waiting for the joint 

development option net gain. In case of success outcome with the option E1 exercise, is optimal the 

immediate development option R1 exercise. Eqs.(36) and (37) are the smooth-pasting conditions for 

the cases presented in eqs.(33) and (34), respectively, i.e., the derivatives ∂E1(P1
**, .; .)/ ∂P. The 

solution of E1(P, t; CF1) is obtained by standard numerical methods like finite differences. 

The two-exploratory assets portfolio value, denoted by Π, is the isolated prospect 1 exploratory 

option without portfolio effects E1(P, t; CF1)isolated, given by eqs.(18)-(22), plus the prospect 2 

exploratory option with portfolio effects CF1 [E2(P, t; CF2
+)] + (1 − CF1) [E2(P, t; CF2

−)], where the 

option E2(P, t; CF2
+) is given by eqs.(18)-(19) and (28)-(30b), which considers learning and synergy, 

and the option E2(P, t; CF2
−) is given by eqs.(18)-(22). That is, 

Π(P, t; CF1, CF2, ρ, γsyn) = E1(P, t; CF1)isolated + CF1 [E2(P, t; CF2
+)] + (1 − CF1) [E2(P, t; CF2

−)]      (38) 

With the above equations, the two-assets compound real options portfolio considering learning, 

synergy and option to delay, is complete.  

Figure 11 illustrates the effect of introducing the option to delay in the portfolio, by comparing the 

case with one year to expiration with the case at expiration (discussed before in the section 3). Note 

that for low values of |ρ| the synergy effect is more relevant, whereas for high values of |ρ| the 

learning effect is predominant.  



 
Figure 11 – Portfolio Value with Learning, Synergy and Option to Delay x Correlation 
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TO BE COMPLETED. 

7 – Conclusion  

In this paper we study the problem of portfolio of real assets with the real options lens. We examined 

the effect of correlation on learning and synergy and the optionality role in the portfolio value. The 

focus was petroleum exploration and development, but the methodology can be applied to other 

problems such as the R&D portfolio of correlated projects. The learning process study with simple 

Bernoulli distributions has theoretical interest due to its simplicity, and practical interest because the 

chance factor is a key variable for exploratory projects. Synergy is considered in the investment, 

because is common in oil industry that two neighboring oilfields share investment infrastructure. 

We saw that the role of correlation in real assets portfolio case is very different of the case of 

financial assets portfolio. Correlation can create value in the former case thanks to learning plus 

optionality and synergy.  



For learning purposes the correlation signal is not particularly relevant because learning is increasing 

with the square correlation coefficient. The reason is that for Bernoulli distributions the square 

correlation coefficient is also the expected percentage of variance reduction, a learning measure with 

many favorable properties.  

For synergy purposes, the correlation signal matters and synergy is increasing with the correlation 

coefficient itself. The reason is that higher correlation increases the chance of double success and so 

the chance of synergy occurrence.  

This paper can be extended in many ways. For example, in addition to chance factor, we could 

consider learning also in the economic quality of the reserve (q) and in the reserve volume (B). We 

could also consider some secondary synergy effect over the operational cost, which in this paper 

model it is captured by the quality q. We could also consider other stochastic processes for oil prices 

and even stochastic development investment. These and other extensions are left to future work. 

APPENDIXES 

A) Learning Measures and the Recommended η2 

This section is more detailed described in Dias (2005a, 2005b). Let X be a random variable (r.v.) of 

interest and S be a signal, also a random variable. The idea is that X learns from S. Formally, 

consider two r.v. X and S with finite variances, defined in the same probability space (Ω, Σ, P ). The 

following axiom list represents the desirable learning measure properties. 

Axioms for Probabilistic Learning Measures: The following axiom list gives the desirable properties 

for a probabilistic learning measure denoted by M(X | S): 

A) M(X | S) shall exist at least for all non-trivial r.v. X and S and with finite uncertainty; 

B) M(X | S) shall be, in general, asymmetric; 

C) M(X | S) shall be normalized in the unit interval in order to ease the interpretation, i.e., 

0 ≤ M(X | S) ≤ 1                                                                        (A1) 

D) If X and S are independent ⇒ M(X | S) = M(S | X) = 0, because there is no probabilistic 

learning. In addition,   

M(X | S) = 0  ⇒  zero learning                                                    (A2) 



Where “zero learning” can occur not only for the case of independence. The learning concept is 

defined in the specific measure, but its sense must be invariable (eg., the measure of 

uncertainty shall be the same for all applications); 

E) In case of functional dependence, M(X | S) shall be maximum, i.e., for any real function 

f(.): 

X = f(S)  ⇒  M(X | S) = 1                                                     (A3) 

In addition: 

M(X | S)  =  1  ⇒  maximum learning                                 (A4) 

Where “maximum learning” means that is not possible to learn more about X, and learning 

concept is defined in the specific measure, but its sense must be invariable; 

F)  M(X | S) shall be invariant under linear transformations (changes of scale) of either X or 

S, i.e., for real constants a and b, a ≠ 0:  

M(a X + b | S)   =  M (X | S)                                             (A5) 

M(X | S)   =  M (X | a S + b)                                             (A6) 

G) M(X | S) shall be practical in the sense of easy interpretation (intuitive) and easy to 

quantify/estimate. 

H) M(X | S) shall be additive in the following sense: if the information S can be decomposed 

into a sum of independent factors S1 + S2 +… + Sn, so that the knowledge of all these 

factors provides maximum learning, then the summation of the individual learning 

measures shall be equal 100%, i.e.: 

 M(X | S1) +  M(X | S2) + … + M(X | Sn)  =  1                                 (A7) 
 

Definition. Learning measure η2: Consider two r.v. X and S with finite variances, defined in the 

same probability space (Ω, Σ, P ). The expected percentage of variance reduction of X given S is: 

2 Var[X]  E[ Var[ X | S ] ]η (X | S)    
Var[X]

−
=                                             (A8) 



The notation η2 is adopted due to two reasons: (a) it eases the connection with the statistical 

interpretation of η2, namely the correlation ratio13, also known by “eta-squared” in some statistical 

books; and (b) in some situations (e.g.: Bernoulli processes) is more intuitive the positive root of η2, 

i.e., η that is simply the correlation coefficient in the exploratory assets portfolio application. It is 

easy to prove that: 

2 Var[ E[ X | S] ]η (X | S)      
Var[X]

=                                         (A9) 

Proposition (proof: Dias, 1005a, 2005b): Let X and S be two non-trivial r.v.14 with finite variances, 

defined in the same probability space (Ω, Σ, P ). Consider the learning measure η2(X | S) defined 

above. Then, this measure has the following properties: 

(a) The measure η2(X | S) always exists; 

(b) The measure η2 is, in general, asymmetric, i.e.,  η2(X | S) ≠ η2(S | X) 

(c) The measure η2 is normalized in unit interval, that is15, 

0 ≤ η2 ≤ 1                                                                                   (A10) 

(d) If X and S are independent r.v., then η2 is zero: 

X and S independent  ⇒  η2(X | S)  =  η2(S | X)  =  0                              (A11) 

In addition, η2 is zero if and only if the revelation distribution variance is zero: 

η2(X | S)  =  0   ⇔   Var[RX(S)] = 0                                                (A12) 

(e) η2(X | S) = 1 ⇔  exists a real function, the r.v. g(S), so that X = g(S);  

(f) The measure η2(X | S) é invariant under linear transformations of X, i.e., for any real numbers a 

and b, with a ≠ 0, we have: 

η2(a X + b | S)   =  η2(X | S)                                                                 (A13) 

(g) The measure η2(X | S) is invariant under linear and nonlinear transformation of S if the 

transformation g(S) is a 1-1 function (invertible function).  

                                                 
13 The famous statistician Karl Pearson introduced the correlation ratio in 1903. Kolmogorov, 1933, p.60, linked this 
concept with the conditional expectations concept. 
14 Non-trivial means strictly positive variances. Proposition 1 is valid almost surely (with probability 1). 
15 We could also highlight that η2 is a truly measure, because η2 ≥ 0. 



η2(X | g(S))  =  η2(X | S),        g(s) is invertible                                (A14) 

In general, for any g(S) measurable by the sigma-algebra generated by S, then the inequality below 

holds: 

η2(X | g(S))  ≤  η2(X | S) , with equality if g(s) is invertible               (A15) 

(h) If the r.v. Z1, Z2, … are independent and identically distributed (iid) and if S = Z1 + Z2 + … + Zj 

and X = Z1 + Z2 + … + Zj + k for any non-negative integers j and k, with j + k > 0, the proposed 

measure η2(X | S) is given directly by: 

η2(X | S) = 
j

j + k
                                                                    (A16) 

(i) Let the signals S1, S2, … , Sn, be independent random variables. We want to learn about X, a 

random variable with Var[X] > 0. Assume as finite all the relevant expectations and variances. Let X 

= f(S1) + g(S2) + . . . + h(Sn), where f, g, . . . , h, are any real valued functions. Then: 

η2(X | S1) + η2(X | S2) + … + η2(X | Sn) = 1                                    (A17) 

Proposition (Learning measure η2): The proposed learning measure η2 obeys the entire axiom list.  

B) Revelation Distributions 

The proposed learning measure η2 is related with the concept of revelation distribution presented in 

Dias (2002). Revelation distribution is a distribution of conditional expectations where the 

conditioning is the information (signal) revealed by the exercise of a learning option. The term 

“revelation” emphasizes a process towards the true value of variable with technical uncertainty, and it 

has been used in related literature and before in the classic economics of information literature. This 

term suggest a learning process to find out the true state of nature.  

Revelation distributions are distributions of conditional expectations. Denote the r.v. associated with 

the revelation distribution by RX(S) = E[ X | S], where X is the variable of interest with technical 

uncertainty (e.g., chance factor of an oil prospect; reserve volume of a new oilfield) and S is the 

signal (e.g., the drilling outcome from a correlated oil prospect; the information generated by an 

appraisal well in a new oilfield).  

Definition. Revelation process is the sequence of r.v. {RX,1, RX,2, RX,3, …} generated by a sequence 

of signals S1, S2, S3, … about an interest variable X, which its main characteristic is the expected 

reduction of uncertainty provided by these signals. Revelation process is a probabilistic learning 



process. In the mathematical literature is sometimes referenced as “accumulating data about a r.v.” 

or as Doob-type martingale.  

Revelation processes are uniformly integrable, meaning that it converges with vanishing risk to an 

integrable random variable and in particular to the full revelation of X (see Dias, 2005a, 2005b).  

Definition. Full revelation of X is the revelation of a scenario c so that Pr(X = c) = 1, where c is a 

constant belonging to p(x) support. In general, if the available information is given by the sub-sigma-

algebra Ψ, full revelation of X means that X is Ψ−measurable and, hence, we can write E[X | Ψ] = X 

almost surely (a.s.). Intuitively, it means that there is perfect information about the true state of nature 

for the variable X. 

Proposition (Revelation Distributions): Let the r.v. X and S two-times integrable (i.e, finite mean and 

finite variance) defined in the probability space (Ω, Σ, P ). The interest variable X has prior 

distribution p(x). The signal S generates the sigma-algebra Ψ, a sub-sigma-algebra of Σ, i.e., Ψ ⊆ Σ. 

Let p(RX) be the probability density of RX = E[X | S], i.e., the revelation distribution of X given S. 

Then, the revelation distribution is almost defined16 by the following properties: 

(a) In the limit case of full revelation, the variance of any posterior distribution is zero and the 

revelation distribution p(RX) is equal to prior distribution p(x). 

(b) The revelation distribution mean is equal to the prior mean of X, i. e.:  

E[RX] = E[X]                                                                     (B1) 

(c) The revelation distribution variance is simply the expected variance reduction of X 

caused by the signal S, i.e., the prior variance less the expected posterior variance: 

Var[RX]   =   Var[X]  −  E[ Var[X | S ] ]                                         (B2) 

It can also written using the learning measure η2: 

Var[RX]   =   η2 Var[X]                                                                   (B3) 

(d) Consider a sequential exercise of learning options generating the signals S1, S2, S3, … and 

the r.v. {RX,n} = {E[X | S1, S2, … Sn]}, n = 1, 2, … Then, the revelation process {RX,1, 

RX,2, RX,3, …} is a martingale. 

 

                                                 
16 Definition: almost defined distribution is a distribution that we know at least the mean, the variance and that belongs to 
a sequential process of distributions with known initial distribution and convergent to a known distribution. 



Revelation distribution does not require risk-adjustment to use the risk-neutral approach (as in case of 

market uncertainty distributions) because technical uncertainty does not demand risk-premium from 

diversified investors. So, revelation distributions are naturally risk-neutral. With the above 

properties, Dias (2002) combines revelation distributions with risk-neutral (or adjusted) stochastic 

process into a Monte Carlo framework in order to solve the real options problem on investment in 

information in an oilfield with technical uncertainties before the development decision. 
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