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This paper proposes a theory for technical uncertainty with main focus on learning real options and
real option games applications. It discusses information revelation as processes of reduction of
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of conditional expectations of a variable of interest, where the conditioning is the set of new
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practical properties. A set of axioms for (probabilistic) learning measures is presented. This paper
also analyzes with some detail the simplest revelation process, namely the sequential bivariate
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methodology.

JEL classification: G31; G12;

Keywords: value of information, real options, learning measures, information revelation processes,

exploratory process, bivariate Bernoulli process, correlation ratio, investment under uncertainty.

(*) D.Sc. and (internal) Senior Consultant at Petrobras. Adjunct Professor (part-time) at PUC-Rio. E-mail:
marcoagd@pobox.com. Address: Petrobras/E&P-ENGP/RR/DPR. Av. Chile 65, sala 1702 — Rio de Janeiro,
RJ, Brazil, 20035-900. Phone: +55 (21) 32242164. Fax: +55 (21) 32241579.




1 — Introduction and Literature Review

The modern theory of stochastic processes has been successfully used in real options applications in
which the future value of a project or real asset is uncertain due to market uncertainty in prices,
demand of a product, costs, etc. This theory is well developed in real options textbooks like Dixit &
Pindyck (1994), Trigeorgis (1996), Copeland & Antikarov (2001), etc. However, in many
applications (e.g. petroleum exploration, R&D) is very relevant the technical uncertainty about the
true values of specific parameters of a project. In petroleum exploration, the oil company faces
uncertainty on the existence, volume and quality of petroleum prospect when deciding about the
wildcat (pioneer) well drilling investment. In R&D, there is uncertainty about the technical success of
a specific project, e.g., a pharmaceutical firm faces uncertainty about the success of a drug test phase.
Technical uncertainty is related with the project specific characteristics, i.e., the profit function
parameters and usually can be reduced by investing in information (exercising learning options). For
instance, in a R&D of a new machine, there is uncertainty about the MTBF (mean time between fails)

and the prototype phase and/or a pilot test phase can reduce this uncertainty.

Some papers (e.g., Cortazar & Schwartz & Casassus, 2001) use stochastic processes like the
geometric Brownian motion (GBM) to model technical uncertainty, which is not adequate for many
reasons. One reason is that, under GBM hypothesis, the variable changes by the simple passage of
time, whereas in most real applications the variable with technical uncertainty changes only with the
exercise of a learning option. So, the filtration for technical uncertainty is indexed by events', not by
the time, as in almost all stochastic processes. Other reason is that the probabilistic laws for known
stochastic processes are not adequate for learning processes on variables with technical uncertainty,
e.g., in GBM models the variance is unbounded, whereas for learning processes this variance is

bounded by the prior distribution variance, see Theorem 1(a) below.

First, we must highlight that the concepts of information and uncertainty are connected. The paper
focus is much in the spirit of Arrow (1973, p.138): “When there is uncertainty, there is usually the
possibility of reducing it by acquisition of information. Indeed, information is merely the negative
measure of uncertainty”. This sentence holds mainly for technical uncertainty, e.g., generally we
cannot reduce the uncertainty in oil prices by investing in information, but we can reduce the

uncertainty in oil reserve volume by investing in appraisal wells, i.e., by exercising learning options.

' The time between events can take months or years. In most cases the events are endogenous in the model (are options).



This paper proposes a theory for the process generated by the exercise of learning options — called
revelation process, as an adequate approach to consider the technical uncertainty issue in real options
applications. We want to solve investment under uncertainty problems with opportunities to invest in
information or to receive new relevant information from an external source (e.g., externalities from
other firm investing in information) in order to learn about technical parameter values of a real asset.
In many cases, we have a compound option, the learning option(s) and the project development
option, i.e., we have alternatives of investment in information in order to know better the project true
value (e.g., a pilot project to test a technology, a market test to know better the demand function, an

appraisal well) and the option to develop the project (e.g., a full scale production plant).

In order to study learning options, this section consider the classical literature on economics of
information focused on value of information (VOI) issue. The classical theory of VOI is well
summarized in Lawrence (1999), which uses the general concept of informativeness (0) to handle
VOI problems, showing the necessity of a learning measure for VOI problems. In some statistical
applications, like experimental design, 0 is the sample size; in classical VOI applications has been
used the concept of likelihood of information. In this paper (section 3) is developed a very general
theory for probabilistic learning measures and is proposed the concept of expected percentage of
variance reduction as the best 6 measure for most VOI applications. However, it is almost impossible
to find out a specific learning measure applicable to all VOI problems. In this aspect Arrow (1984,
Preface) wrote: “it has proved difficult to frame a general theory of information as an economic

commodity, because different kinds of information have no common unit that has yet been identified”.

In order to illustrate the Arrow’s statement, let us compare two measures of uncertainty; namely the
concept of entropy — from the information theory literature, and the traditional concept of variance.
Many important researchers (like Arrow, Marschak, etc., in the 50°s) considered the entropy concept
in VOI problems. Consider a univariate discrete distribution with prior p(x). In Shannon sense (see

Shannon & Weaver, 1949), entropy (H) is a measure of uncertainty” defined by:

H(X) = - 2 p(x;) loglp(x,)]

Note in the above entropy definition that does not matter the scenario values, only the probabilities of

different scenarios are considered. This feature has advantages, such as the simplicity to represent the

* Assume that 0 . log(0) = 0. In case of no uncertainty (here named full revelation) the entropy goes to zero because log(1)
= 0. The logarithm base in the entropy equation is arbitrary. Many texts use base 2, so that entropy is measured in “bits”.



uncertainty. But in valuation problems where the magnitude of losses or gains matters’, this feature

can be a drawback or will need an additional variable to conjugate probabilities and scenario values.

Parties of the entropy measure will argue that the uniform distribution represents the highest degree
of uncertainty over a bounded interval in the real line and it is consistent with the entropy concept,
but not with the variance one. This argument can be convincing in many applications, given the
popularity of the entropy measure in telecommunications, some branches of statistics, Komolgorov
complexity theory, etc. However, this seducer argument is not coherent with applications in both

corporate finance® and in most cases from the economic value of information literature.

Consider a portfolio with uncertain returns represented by only three discrete scenarios denoted by
ITr = {— 10%; 10%; 30%}. The uniform distribution — which has the highest possible entropy,
assigns probabilities H = {33.3%; 33.3%; 33.3%} for these scenarios, whereas one non-uniform
distribution with higher variance could assign probabilities V = {45%; 10%; 45%}. With the same
expected return, risk-averse investors using expected utility theory in general and mean-variance
optimizers in particular, will indicate the lower entropy (but higher variance) set V as “riskier” than
H. Recall that mean-variance is a key concept in the modern portfolio theory, and used in the popular

CAPM (capital asset pricing model) to set appropriate risk-premium.

Now, consider a real asset case. What if we consider that the value of this asset has technical
uncertainty? Technical uncertainty has zero correlation with the market portfolio so that it does not
demand risk-premium from diversified investors. Even in this case, we will prefer the set H than the
set V. In this case the relevant issue is not the risk-premium demanded (zero in both H and V) but the
results from the economic optimization under (technical) uncertainty. To see this, consider the same
probabilities sets H and V, but the scenarios are the possible reserve volumes of an oilfield with [1g =
{200; 300; 400}, in million barrels. The optimal investment in processing plant capacity, pipeline
diameter, number of wells, etc., depends on the true volume scenario of this reserve. If we must
develop the oilfield project without additional information, for capacity design purposes in general
we will minimize the error by choosing the expected value of this volume, equal to 300 for both
distributions (H and V). However, is expected a lower economic value for this real asset with the

distribution V because the probability of either over investment (if the true scenario is 200) or under

This is not a problem in communication channel design because the scenarios are messages, not numerical amounts.

* There are some adepts of the so-called log-optimal portfolio approach, which uses the concept of entropy. But the next
example and mainly the Paul Samuelson criticism in the 70’s make difficult to consider this alternative portfolio theory.



investment (if the true scenario is 400) is much higher with V than with H. For the other side of coin
— the side of the opportunity to invest in information, the set V in general will provide a higher value
of information than the set H, again due to the higher probability with the former of either over or

under investment without knowledge of the true scenario.

So, the concept of variance as measure of uncertainty is in general more useful than the concept of
entropy by the point of view of corporate finance and economics of information. Based in the concept
of variance, sections 2 and 3 advocate that a learning measure based in the variance concept, namely
the (relative) expected variance reduction, denoted by n? (we will see later the reason for this
nomenclature), has very convenient mathematical properties for learning measure applications. The
measure 1 obeys a set of reasonable axioms for probabilistic learning measures, whereas the popular
information likelihood doesn’t obey these axioms. Likelihood is useful in many statistical cases, but
it is not so useful in VOI applications, contrary to conventional wisdom. This paper defends the
measure 1 replacing likelihood and others concepts in VOI applications, especially in the dynamic

real options setting.

Motivated by oil exploration applications, this paper studies a special technical uncertainty process
generated by a sequence of learning options exercises: the Bernoulli revelation process, which is a

sequence of bivariate Bernoulli distributions. The chance factor (CF) of oil existence in a prospect is

a variable with technical uncertainty that is very important for exploratory investment decisions. CF
is a Bernoulli random variable, which has two scenarios: 1 (success, existence of oil with probability
p) and O (failure, with probability 1 — p). The exercise of a learning option, such as the drilling of a
correlated prospect, is the signal S, which is also a Bernoulli random variable. The dependence
degree between the these two Bernoulli variables (CF and S) must be studied in the context of
bivariate Bernoulli distribution and this paper shows that the (positive) square root of n* (i.e., 1) is an
adequate dependence measure for learning purposes. In this specific case of bivariate Bernoulli, 1 is
equal to the correlation coefficient. Using this measure, the paper studies some Bernoulli revelation
process, highlighting the exchangeable bivariate Bernoulli distributions with recombining scenarios,

which resemble the binomial processes used in discrete option pricing.

This paper is divided as follow. Section 2 presents a simple example in petroleum exploration
economics that highlights the necessity of learning measures for both real options portfolio and
option games applications. Section 3 presents the main results with propositions on revelation

distributions, the properties of n* (the proposed learning measure), the learning decomposition



theorem, axioms for learning measures, the concept of flexible information structures, and the
potential applications for these concepts. Section 4 shows the case of Bernoulli revelation processes,
very important in practical applications (e.g., petroleum exploration and R&D) and in theoretical
studies (it is the simplest revelation process), including the Fréchet-Hoeffding bounds for a learning
process, the measure n? in this Bernoulli context, and the simplification with interchangeable
Bernoulli variables. Section 5 presents the concluding remarks and some suggestions for further

research.

2 — Portfolio of Real Assets: A Simple Motivating Example

Here and in most of this paper, consider only technical uncertainty and investment optionality, for

expositional clarity. However, the paper will also present a case in which technical uncertainty
interacts with market uncertainty. In this section, to motivate to the necessity of a learning measure in
both real options and option games applications, consider the following example (based in Dias,
2004). An oil company owns the rights over a tract with two exploratory prospects. For each

prospect, the value of the drilling option exercise is the expected monetary value (EMV)’, given by:
EMV = — Iy + [CF.NPV] 1)

Where Iy is the drilling investment in the wildcat well (option exercise price), CF is the chance
factor about the existence of an oilfield (detailed below), and NPV is (conditional to exploratory
success) the net present value of the oilfield development®. The chance factor is the parameter with
technical uncertainty with the simplest probability distribution — the Bernoulli distribution, which has
two scenarios (1 = success and 0 = failure) and one parameter (p) named success probability. So, we
use CF ~ Be(p) to denote this Bernoulli distribution. The expected value of a Bernoulli distribution is
the success probability, i.e., E[CF] = p. Consider that the two prospects are symmetric, i.e., they have
the same parameters and so the same EMV. Assume the numerical values Iy = 30 million $, E[CF] =

p =30% and NPV = 95 million $ for both prospects. So, the EMV is negative:
EMV, = EMV, =-30+[0.3x95] = — 1.5 million $

Apparently this two real assets portfolio is worthless. Indeed, if the prospects in this portfolio were

independents, the two-prospects portfolio value would be zero. However, we will see that the

> EMV is used in exploration economics and it is a concept analog to NPV (net present value).
% In a more general case (with market uncertainty), instead the NPV we have the value of the development option. Here
we can also imagine that the drilling option is expiring, so that the option to wait values zero.



portfolio value can be strictly positive if they are dependent. Suppose that these two exploratory

prospects are in the same geologic play’, so that the prospects are dependent with positive

correlation. If these prospects have positive correlation, in case of success in one prospect, the
success probability p from the second prospect chance factor (CF,) must be revised upward (to CF,")
and in case of failure p must be revised downward (to CF,"). Figure 1 illustrates this learning

updating with the information revelation generated by the first option exercise.

Information Revelation
Revelation Distribution
(from well 1)

CF, besore ~ Be(p)

Figure 1 — Effect of the Well 1 Signal on the Chance Factor CF;

After the signal S; (information revelation with the well number 1 drilling), Figure 1 shows two
updated scenarios for the variable of interest CF»: the good news case, CF," = E[CF, | S; = CF, = 1],
and the bad news case, CF, = E[CF; | S; = CF; = 0], so we have a simple two-scenario distribution
of conditional expectations, where the conditioning is the information revelation. The distributions of
conditional expectations are here named revelation distributions, and a set of properties for these

distributions will be presented soon.

The intensity of this CF, updating process is function of the degree of dependence between the
prospects and will be discussed with details mainly in the section 4. The probability of a positive
information revelation (q) is the success probability for the well 1. In this symmetrical example, both
prospects have the same unconditional success probability (p), so that p = q. In this case these
random variables (r.v.) are called exchangeable (see section 4). In this example consider that the
dependence degree makes CF," = 50% in case of success for the well 1. Probabilistic consistency,
given by the law of iterated expectations (see section 3), demands that CF,” = 21.43 %. In case of

bad news (i.e., using CF, in the eq. 1), the EMV; is even worse than the — 1.5 million obtained with

7 The prospects share common geological hypotheses, e.g., existence (or not) of oil migration from the source rock to that
area with presence of reservoir rock and synchronism for the sequential geologic events.



CF,. But it is an option so that the prospect 2 will not be drilled in case of bad news and the value of
the prospect in this scenario is zero. However, in case of good news the prospect 2 becomes attractive

(EMV;" > 0) so that the drilling option is exercised in case of good news. So, the portfolio value is:
EMV, + E[option(EMV;)] = — 1.5+ [(0.7 x zero) + (0.3 x 17.5)] = + 3.75 million $

A very different value when compared with the case of independent prospects. Note that the positive
result is due to both the optional nature of investment drilling and the information revelation
generated by the first drilling. Because of the assets optional nature, the value of this portfolio is
higher as higher is the dependence between the prospects. Hence, the real option value a portfolio of
assets with technical uncertainty is an increasing function of the dependence degree between these

assets, and the study of learning measures based in the dependence degree between r.v. is demanded.

Note that in this paper the role of dependence is very different of the traditional portfolio theory for
financial assets (Markowitz): here there is information revelation by sequential exercise of learning
options, an active exploitation of dependence, whereas in financial portfolio theory the role of
dependence is only for diversification purposes. Note that, for learning purposes, is not particularly
relevant the dependence direction (if positive or negative), whereas for diversification purposes low
(or even negative) dependence is much better than high/positive dependence. In order to see this,
imagine in Figure 1 that the signal S; has negative dependence with CF,, but with the same intensity
so that the revealed scenarios CF,” and CF,™ are only permuted’. The learning with this signal is
exactly the same because applying the option rule Max(EMV, 0) results in the same portfolio value.
Hence, insights from Markowitz’ theory is not applicable in portfolio of real options with technical

uncertainties, even more for the role played by the measure of dependence between the uncertainties.

Valuation of real assets portfolio per se justifies the study of learning measures. But, there are other
relevant applications like option games, as in Dias & Teixeira (2004). In order to illustrate this point,
instead a portfolio owned by a single firm, suppose in the Figure 1 example that firm 1 owns the
prospect 1 and firm 2 owns the prospect 2. In this case, one alternative is to play a non-cooperative
game named war of attrition in which one firm wait for the other firm option exercise in order to use
this information as a free rider. The game prize is the information revelation value that depends on
the learning intensity given by degree of dependence between the prospects. Other strategic

alternative is to play a bargain game where again the surplus to be divided is given by the effect of

¥ Assuming that the probability of good news for CF, (here CF; = 0) remains the same, i.e, 1 —q = 30% in this case.



the information revelation on the prospects, which depends on degree of dependence (or learning
degree) between the prospects. In the first case, the free rider works with public information, whereas
in the bargain game the players work with private information. Public information is only a subset of
private information and is necessary to differentiate these games with a good learning measure, as

done in Dias & Teixeira (2004).

So, in order to quantify interesting real options and option games problems is necessary to study the

learning degree of a signal over a variable of interest. This is done in the next two sections.

3 — Revelation Distribution and Learning Measures

In this section are presented a series of definitions, lemmas, propositions, theorem and a list of

axioms for probabilistic learning measures.

Definition. Prior distribution: it is a probability distribution that represents all prior knowledge that
the decision maker knows about one r.v. (based in Lawrence, 1999, p.5). The prior distribution
support’ includes all possible values (scenarios) that this variable can assume, while the probability
density represents the best estimative of the occurrence probability for these scenarios, using the
current knowledge (prior information). Notation: p(x) is the prior distribution for the r.v. X.

Definition. Information structure: comprises the space of messages (signals S) plus the joint
measure of states and messages (Lawrence, 1999, p.16). The information structure Z is defined by:

T ={S,p(x9)} @)

The joint measure is the joint probability distribution of two r.v., p(X, s). This suggests that is
necessary to study bivariate and multivariate probability distributions in order to analyze VOI
problems. The above definition suggests also a comparison of information structures to determine if
one structure is more informative than other. This is a classical statistics theme from the comparison
of experiments literature (Blackwell, 1951). Arrow (1992, p.169) notes that could be useful even a

partial ordering for the signals independently of the specific decision problem. In our setting, we will

include the proposed learning measure m° into the information structure Z plus one additional

condition, in order to replace the joint probability distribution input. The additional condition will

depend on the kind of problem (flexible information structure), but with our learning measure 1’ into

? The support of a distribution p(x) is the set of values where p(x) > 0.



the information structure for all applications of our interest, we can perform the comparison of

information structures: for the same prior distribution, higher n* means more informative structure.

The proposed learning measure 1 is related with the concept of revelation distribution presented in
Dias (2002). Revelation distribution is a distribution of conditional expectations where the
conditioning is the information (signal) revealed by the exercise of a learning option. The term

“revelation” emphasizes a process towards the true value of variable with technical uncertainty, and it

has been used in related literature (eg., Grenadier, 1999; Childs et al., 2001) and before in the classic
economics of information literature (eg., Wilson, 1975, p. 186). This term suggest a learning process
to find out the true state of nature. Denote the r.v. associated with the revelation distribution by Rx(S)
= E[ X | S], where X is the variable of interest with technical uncertainty (e.g., chance factor of an oil
prospect; reserve volume of a new oilfield) and S is the signal (e.g., the drilling outcome from a

correlated oil prospect; the information generated by an appraisal well in a new oilfield).

Definition. Revelation process: is the sequence of r.v. {Rx, Rx2, Rxs, ..}'% generated by a
sequence of signals S;, S,, S;, ... about an interest variable X, which its main characteristic is the

expected reduction of uncertainty provided by these signals. Revelation process is a probabilistic

learning process. In the mathematical literature is sometimes referenced as “accumulating data about

a r.v.” (Williams, 1991, p.96) or as Doob-type martingale (see Ross, 1996, p.297).

Revelation processes can be considered as stochastic processes, but in general indexed by events and
not by time, as in most stochastic processes. This paper is interested mainly in processes with events
being exercise of learning options, in order to model the technical uncertainty evolution (expected
reduction of uncertainty) with the investment in information process. One example of revelation
process indexed by events is the sequential drilling from the appraisal phase after an oilfield
discovery, which reduces the technical uncertainty about the reserve volume of this field. An
example of revelation process indexed by time is the one that generally occur with the stock return of
new firms in the market, the IPO (Initial Public Offering). The stock volatility in this case is
generally very high in the beginning, but with the passage of time this volatility is reduced (but never
to zero) as the investors learn about the firm capability to generate return to their stockholders. In this
case, we have revelation process only during a temporal transient with diffusion of new information

to the market players. After this transient, the market can be considered efficient to price this stock,

"' We could define this process as a sequence of probabilistic moments from posterior distributions, with the conditional
expectation distribution being a particular moment. But hardly this definition could be so useful as here proposed.



ceasing the revelation (reduction of uncertainty) process. Example of process that is not revelation

process is the Itd diffusion process (like geometric Brownian or mean reversion processes).

Definition. Full revelation of X: is the revelation of a scenario c so that Pr(X =c) = 1, where c is a
constant belonging to p(x) support. In general terms, if the available information is given by the sub-

sigma-algebra WV, full revelation of X means that X is ‘Y—measurable and, hence, we can write E[X |

W] =X almost surely (a.s.)'". Intuitively, it means that there is perfect information about the true state

of nature for the variable X.

We will see that any revelation process converges' to an integrable r.v. denoted by X., for n — oo,
where n is the number of (relevant) signals. But not always converges to the full revelation limit, that
is, the convergence is not always X.. = X. Mathematically, a revelation process is the Doob s process
(Karlin & Taylor, 1975, p.246 and 295). Note that not all r.v. sequence converges to an integrable
r.v. X.. All revelation processes converges because the process {Rx 1, Rx2, ... Rxn} is uniformly
integrable (see Appendix A for the definition). Using this, Lemma 1 below shows that this implies

that the {Rx .} sequence converges to X, when n — oo.

Lemma 1: Let {Rx, Rx2, ... Rxa} be a revelation process, i.e., Rxx = E[X | 3] are defined in the
same probability space (Q, =, P), being X integrable. Iy is a filtration" {Ji: k > 0}, with Iy being
generated by the signals sequence {Si}. Then, the revelation process is uniformly integrable and,
hence, when n — oo, there exists a.s. a limit of Rx, in L' (i.e., in mean) that is an integrable r.v.

denoted by X, that is also a conditional expectation, i.e.:
lim, 50 Rxn = Xo = E[X|S1,S2,...] = E[X]|Jx] A

Proof: First must be proved that any revelation process is a martingale. Theorem 1(d) below shows
this. The proof that uniform integrability is sufficient for the martingale convergence in L' is given by
the famous Doob’s Martingale Convergence Theorem' (see, e.g., Brzezniak & Zastawniak, 1999,
theorem 4.2, p.71-73). The proof that the revelation process is uniformly integrable is done, e.g., in

Ross (1996, p.319) or in Karlin & Taylor (1975, p.295-296) for Doob-type martingale (and so for

"' In addition, algebraic operations like sum, product and division, don’t destroy measurability (Gallant, 1997, p.47).

21t converges almost surely (with probability 1), which implies that converges in probability, which also implies that
converges in distribution (Karlin & Taylor, 1975, p.18).

"> We can interpret the filtration 3, generated by a sequential information process {Si, S, ... S,} as a set with all
available information in the stage n. In technical terms, it is a increasing family of sub-sigma-algebras generated by the
information revelation, e.g., Rx » = E[X| S, S5].

'* This theorem has been used to prove other theorems like the Komolgorov 0-1 law and Kalman filter equations. Here we
exploit other application for this famous theorem.



revelation process). Hence, there is a limit given by an integrable r.v. X,.. The proof that this limit is a

conditional expectation E[X | 3., ] is given by Karlin & Taylor (1975, p.310)". O

As the revelation process al/ways converges to some X, is redundant the qualifier “convergent” to
this process, and we will use this qualifier only for the full revelation convergence, i. e., when X, =
X (or Var[X | Si, Sa, ..., Su] & 0 when n — o). One practical example of convergent revelation
process is the drilling of appraisal wells in order to reduce the uncertainty about the oil-in-place
volume from one oilfield. It is convergent because if we drill a very large (infinite) number of wells

we get the true value of this volume. An example of non-convergent process is the return of IPOs.

Theorem 1 describes the 4 main revelation distribution properties (distribution of the r.v. Rx). These

properties are: the Rx mean, the Rx variance, Rx in the limit case of full revelation and the martingale

property for revelation processes (Rx sequences).

Theorem 1 (Revelation Distributions): Let the r.v. X and S two-times integrable (i.e, finite mean and

finite variance) defined in the probability space (Q, X, P). The interest variable X has prior
distribution p(x). The signal S generates the sigma-algebra ¥, a sub-sigma-algebra of Z, i.e., ¥ c .
Let p(Rx) be the probability density of Rx = E[X | S], i.e., the revelation distribution of X given S.

Then, the revelation distribution is almost defined'® by the following properties:

(a) In the limit case of full revelation, the variance of any posterior distribution is zero and the

revelation distribution p(Rx) is equal to prior distribution p(x).

(b) The revelation distribution mean is equal to the prior mean of X, i. e.:
E[Rx] = E[X] “4)
(c) The revelation distribution variance is simply the expected variance reduction of X
caused by the signal S, i.e., the prior variance less the expected posterior variance:
Var[Rx] = Var[X] — E[ Var[X|S]] 5)
(d) Consider a sequential exercise of learning options generating the signals S;, S,, Ss, ... and
the r.v. {Rx.} = {E[X | Si, Sz, ... Sul}, n =1, 2, ... Then, the revelation process {Rx,
Rx2, Rx3, ...} 1s a martingale.

S A simple proof: note that Rx , is a function of Sy, S,, ... S;, so that the limit X, is a measurable function of this
sequence of signals. Hence, it is measurable with respect to 3.

' Definition: almost defined distribution is a distribution that we know at least the mean, the variance and that belongs to
a sequential process of distributions with known initial distribution and convergent to a known distribution.




Proof: See Dias (2002).

Some highlights: (a) Note that Lemma 1 guarantees that always exists a limit with probability 1 and
note that Pr(X=¢) =1 < Var[X] =0 (see DeGroot & Schervish, 2002, theorem 4.3.1, p.198). The
remaining of the proof is given by the prior distribution definition itself. This property also claims
that revelation process variance is bounded by the prior distribution variance. (b) This property is
known as law of iterated expectations. It can be formulated in a more general fashion by using the
sub-sigma-algebra W (instead the r.v. S): if Ry is any version'’ of E[X | W] then E[Rx] = E[X], a.s.
(c) This property is the heart of Theorem 1 and we will see that it is linked with the proposed learning

measure 1°. Variance of Ry is very practical in the context of technical uncertainty because the

revelation distribution variance is analogous to the role played by volatility in the classical (market
uncertainty) real option problem: as higher is the revelation distribution variance as higher is the
learning option value. Note also the consistency between (c) and (a): in the full revelation limit,
E[Var[X | S]] = 0 = Var[Rx] = Var[X]. (d) This property is useful to study revelation processes and

it points that the expected values are the same for all the revelation distributions in this sequence.

Note that revelation distribution does not require risk-adjustment to use the risk-neutral approach (as
in case of market uncertainty distributions) because technical uncertainty does not demand risk-
premium from diversified investors. So, revelation distributions are naturally risk-neutral. With the
Theorem 1 properties, Dias (2002) combines revelation distributions with risk-neutral (or adjusted)
stochastic process into a Monte Carlo framework in order to solve the following real option problem
on oilfield development decision. An oil company has an undeveloped oilfield with still relevant
remaining technical uncertainty about the oil reserve volume (B) and quality (q). In addition, we have
market uncertainty on oil prices (P) and on development investment (D). There are many alternatives
of investment in information (vertical appraisal well, horizontal appraisal well, long-term production
test, pilot test, etc.) with different learning costs, different times to learn, and different learning
intensities (given by the revelation distribution variances). For each alternative of investment in

information, we can run a Monte Carlo simulation as illustrated in Figure 2.

If R’y is a version of Ry, then R'yx = Ry almost surely (Williams, 1991, p.84).
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Figure 2 — Practical Use of Revelation Distributions in Dias (2002)

In case of development option exercise, we get the net present value: NPV =V -D =q B P - D.
Figure 2 shows the (normalized) development option threshold (red line) where is optimal the
exercise of development option. It also shows two sample-paths generate by Monte Carlo simulation.
Between t = 0 and t = “revelation time”, the normalized project value V/D oscillates due to both the
oil price P and the investment D market uncertainties. At t = “revelation time”, we get new
information about q and B, updating the expectations E[q] and E[B], so that the jump size in V/D is
caused by jumps in these expectations, which are drawn from the revelation distributions p(Rq) and
p(Rg). After running many interactions in this Monte Carlo framework, we get the option value F. By
subtracting the learning cost, we get the real option value for this oilfield using one specific learning
alternative. We repeat the simulation (but with different time to learn, different revelation
distributions, etc.) for the other learning alternatives. The alternative with the higher value from these
simulations is the best learning option alternative. This apparent complex problem (compound
options: learning and development options; 5 state variables: P, D, q, B and t) can be solved easily

with a simple Excel spreadsheet plus a Monte Carlo simulation device in seconds or few minutes.

In this problem, for each learning alternative k (that generates a signal Sy), Dias (2002) used the

following flexible information structure that simplified the computational task:



T = {n’(q|Sw,n’(B Sy, A} (6)

Where A is the assumption “the revelation distributions of ¢ and B are approximately'® of the same
type (shape) of the limit case of full revelation”, e.g., if the prior distribution of B is lognormal, we
assume that the revelation distributions for B are also lognormal. This is totally true only for the full
revelation limit, where the revelation distribution is equal to the prior distribution. With this
information structure plus the prior distributions of q and B, we have all the input required for
probabilistic modeling of learning options. Note that, in this problem, we don’t need the distribution
of S nor the joint distribution p(x, s) to solve our real option problem. However, for the discrete
Bernoulli revelation processes we’ll use other kind of information structure, specifying n* and the
distribution of S (replacing the assumption “A” in eq. 6). In all cases, the learning measure n” is used
because it defines the learning potential and it has nice/convenient properties, as we will see below.

We study 1” now, starting with some definitions and the main properties.

Definition. Learning measure n*: Consider two r.v. X and S with finite variances, defined in the
same probability space (€2, Z, P). The expected percentage of variance reduction of X given S is:

Var[X] — E[ Var[X|S]]

wXIS) = Var[X]

(7

The notation n* is adopted due to two reasons: (a) it eases the connection with the statistical
interpretation of n?, namely the correlation ratio', also known by “eta-squared” in some statistical
books; and (b) in some situations (e.g.: Bernoulli processes) is more intuitive the positive root of n?,

i.e., simply n, as we will see. By applying Theorem 1(c) we get:

2 _Var[E[X|S]] _ Var[R,]
wXIS) = Var[X] ~ var[X] ®)

That is, the proposed learning measure is the normalized revelation distribution variance, being

normalized by the initial variance (i.e., the prior distribution variance). Because variance is a non-
negative number, eq. (8) shows that n? is always positive or zero. Eq. (5) (or egs. 7 and 8) shows that,

in average, the posterior distribution variance never grows, i.e.,

'8 With the exact mean and variance, the error caused for a non-exact shape is generally of second order. But this
approximation is good for continuous distributions, but not for discrete distributions (we’ll use other structure).

1 The famous statistician Karl Pearson introduced the correlation ratio in 1903. Kolmogorov, 1933, p.60, linked this
concept with the conditional expectations concept.



Var[Rx] 20 = E[Var[X|S]] < Var[X] )

This learning measure is asymmetric, i.e., n(X | S) # n*(S | X). This is an advantage of n>. The

following example illustrates this paper claim that a good learning measure must be asymmetric for
the gemeral case. Again we use an example from information theory. The expected entropy (also
known as conditional entropy of X given S or equivocation, see McEliece, 2002, p.20) is the average
entropy of the posterior distributions p(x | s) from all possible outcomes of the signal S. For the

discrete case the concept of expected entropy is defined as:

H(X[S) = = > p(x|y)log[p(x|y)]

In words, expected entropy measures the expected remaining uncertainty about X after S has been
observed. The difference between the (unconditional) entropy H(X) and the expected entropy after
the signal H(X | S) is a kind of expected reduction of uncertainty (here measured by entropy) with the
information revealed by S. This amount is called mutual information, also known as information

transmitted or uncertainty removed (Lawrence, 1999, p.62), and is defined for the discrete case by:
IX;S) = HX)-HX|S) (10)

This is perhaps the most important concept from information theory. Note that eq. (10) resembles our

Theorem 1(c) (eq. 5), but with entropy replacing variance. Let us see a classic numerical example®.

Consider two r.v. A and B, with A assuming one value from the set {— 1, +1, — 2, + 2}, each scenario

with probability V4, whereas B = A”. Figure 3 shows this example.

B A
25%
5006 " 2506
5006 | i“ 2%
250
B = A

Figure 3 — Example of Asymmetric Learning

20 This example appeared in Feller (1968, p.236) to show the inadequacy of correlation coefficient to express dependence
in the general case (nonlinear relations between r.v.). McEliece (2002, p.23-24; 45) uses the same example to show the
superiority of mutual information over the correlation coefficient. This paper uses this same example, but to show the
asymmetric measure 1 superiority over symmetric measures like mutual information!




There is an obvious dependence between the r.v. A and B (there is a function linking them!), but the
correlation coefficient is zero. McEliece (2002) pointed the superiority of the metric based in
entropy, because the mutual information I(A, B) is different of zero: I(A, B) = 1 bit. However, this
metric is symmetric, I(A, B) = I(B, A). For learning purposes, if we know the value of A, this
information reveals all the truth about the value of B. Our metric shows that: 1*(B|A) = 100 % (full
revelation case). However, if we know the value of B (e.g. B = 4), we still don’t know the value of A
(e.g., either A =+ 2 or A = — 2, this uncertainty is even worse than the initial case for mean-variance
optimizers in the classic finance). In this case is necessary to use some measure that considers this

asymmetry. Our metric captures this learning asymmetry: n*(A|B) =0 % = n*(B|A) = 100 %.

So, this example showed that we could be interested in asymmetric effects from the interaction of
two r.v. But, for some statistical applications, like “distance of a joint distribution from the
independence case”, a symmetric measure for the dependence of X and S looks natural, because
distance is a symmetrical concept. But symmetry has nothing of “natural placing” in value of
information applications. In particular we are interested in see how S reduce the variance of X or how
valuable is S for X. It doesn’t matter the opposite, i.e., how the variable X reduces the variance of S.
So, there is an asymmetric economic interest to evaluate only one direction for the relations between
the r.v. X and S. A learning measure that captures this asymmetric interest must be asymmetric in
general and symmetric only in particular cases. In this way, we can penalize many dependence
measures as candidate to learning measures. One example is the increasing popular “copula” (see a
good explanation at Nelsen, 1999), which is not adequate candidate for learning measure because is

always symmetric and it is not directly applicable to discrete distributions.

We’ll prove that n° € [0, 1]. This means that as measure n° doesn’t concern with the learning
direction, i.e., if either the dependence is positive or negative*'. This is an advantage® in our context
because we are interested in learning, in improving our knowledge over X by using the information
from the signal S. Remember Figure 1 example discussion, a negative signal but with the same
intensity (same 1) just permutes CF," and CF,” with the portfolio value remaining the same (same

learning effect). The example below also shows this point and permits an intuitive discussion of the

2 Metrics that allow negative values, like the correlation coefficient, are not measures.
*2 This is a disadvantage in some applications like finance portfolio theory: in order to reduce the portfolio variance is
better negative than positive correlations. So this positive/negative distinction is relevant in same applications.



inadequacy, for learning purposes, of metric based in likelihood of information S about the variable

X, i.e., a metric related with the inverse probability p(s | x).

Example: Two experts who own “infallible crystal balls”, know all the truth about the next day
performance of stock X (if will go up or down) in the stock exchange market. An investor want to
buy the expert advise and prior this advice there are 50% chances for each scenario. The expert S; is
known because always says the truth. The expert S, is known because always lies. Of course we gain
the same knowledge by buying either S; or S, advises. The positive dependence between X and S;
and the negative dependence between X and S; provide the same knowledge. So, by the VOI point of
view they are indistinguishable. By the point of view of reliability of the information, i.e., the
likelihood of the information L(S), this metric assumes two different values for the same knowledge

(full revelation of X), i.e., L(S;) =p(S; =a | X =a) = 100% and L(S;) =p(S; =a | X =2a)=0%, a=

up or down. In addition, L(S) metric set the value 0 for the full revelation case in this example! So,
despite its wide use in VOI/economics of information literature, metrics based in likelihood don’t
look adequate for learning purposes. In this example, it is easy to see that our proposed measure
attributes the same value for signals that result in the same learning, i.e., n*(X | S)) =n*(X | Sy) = 1,

because the posterior variance (after either S, or S,) goes to zero.

In Dias (2002) example, we could find by simulation the VOI for different learning intensities, i.e,
different n* values. Figure 4 shows these simulations results (VOI is before the cost of learning

subtraction), which shows a nonconcavity for low values of n* and a rough linear behavior.
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Figure 4 — Value of Information x 1‘|2 in Dias (2002)



The nonconcavity behavior for low learning intensities is consistent with a classic paper of Radner &
Stiglitz (1984). Because it is much easier to work with perfect information (full revelation, n* =
100%) in VOI problems and for no learning (> = 0) the VOI is zero, in some practical cases the
linear approximation VOI(n?) can be useful for fast calculation. Now, we set some key 1’ properties.

3

Proposition 1: Let X and S be two non-trivial r.v.>> with finite variances, defined in the same

probability space (Q, £, P). Consider the learning measure n*(X | S) defined by eq. (7). Then, this

measure has the following properties:
(a) The measure n*(X | S) always exists;
(b) The measure 1’ is, in general, asymmetric, i.e., (X | S) = nX(S | X)

(¢) The measure 1’ is normalized in unit interval, that is**,

0<n’<1 (11)
(d) If X and S are independent r.v., then 1 is zero:
X and S independent = n*(X|S) = n%(S|X) = 0 (12)
In addition, n? is zero if and only if the revelation distribution variance is zero:
(X |S) = 0 < Var[Rx(S)] =0 (13)

() nz(X | S)=1 < exists a real function, the r.v. g(S), so that X = g(S);

(f) The measure n*(X | S) ¢ invariant under linear transformations of X, i.e., for any real numbers a

and b, with a # 0, we have:
@aX+b|S) = n*(X|S) (14)

(g) The measure n*(X | S) is invariant under linear and nonlinear transformation of S if the

transformation g(S) is a 1-1 function (invertible function).
(X | g(S)) = n*(X|S),  g(s) is invertible (15a)

In general, for any g(S) measurable by the sigma-algebra generated by S, then the inequality below
holds:

3 Non-trivial means strictly positive variances. Proposition 1 is valid almost surely (with probability 1).
2 We could also highlight that n?* is a #ruly measure, because n> > 0.




14X | g(S)) < n*(X|S), with equality if g(s) is invertible (15b)

(h) If the r.v. Zy, Z,, ... are independent and identically distributed (iid) and if S=Z; + Z, + ... + Z;

and X =Z; + Z, + ... + Z; +  for any non-negative integers j and k, with j + k > 0, the proposed
measure n°(X | S) is given directly by:

(X |S) = ﬁ (16)

Proof: Appendix B.

In order to motivate to the next theorem about the connection between independent signals and full
revelation, let us first present a simple example. Consider an already discovered oilfield with
uncertainty about the true volume of this reserve. Denote B the random variable number of barrels (or
volume) of this reserve. There is one area (one reservoir) with By million barrels of proved reserves,
and two independent reservoirs (different geologic ages) with reserves of B; and B, if these

reservoirs are filled with petroleum, see Figure 5.

Area B,
Area B, {uncertain)
(no uncerainty) Area B,
(uncertain)

Figure 5 — Qilfield with Two Reservoirs (B; and B;) with Uncertainty

But there is uncertainty if the reservoir is filled with water or with petroleum. The first reservoir has
probability q of petroleum and (1 — q) of water, whereas the second reservoir has probabilities p and
(1 — p) for petroleum and water, respectively. By drilling one appraisal well in each area with
uncertainty we reveal all the truth about the variable B, that is, the reserve volume B is a solely

function of two independent random variables S; and S,:
B(S1,S2) = Bp+(B1 xSy +(B2xS;) a7

Where the signals are independent Bernoulli random variables, S; ~ Be(q) and S, ~ Be(p). For
Bernoulli variables we’ll see that independence means (iff) that n%(S; | S1) = n(S; | S2) = 0. Here we

are interested in n*(B | S;) and n’(B | Sy), i.e, the signals S; and S, relevancy to predict B.



Let us work with numbers: By = 100; B; = 50; B, = 50; q = p = 50%. The expected value equation for
B is: E[B] =By + (B x q) + (B2 x p) = 150. The unconditional (prior) variance is Var[B] = 1250. It is
easy to calculate that the revelation of the signal S, (by drilling the first well) reduces Var[B] by the
half, i.e., n*(B | S1) = 50%. Similarly n*(B | S) = 50%. The example most interesting feature is:

n’(B | S1) + n*(B | S2) = W*[f(S1, S2) | S1l + 7 [£(S1,S2) | S2] = 1 (18)

It is not a coincidence nor because B is linear in S; and S,. We’ll see that this relation is much more
general, valid for any function and for n > 0 independent variables. This > property is not verified by
the “competitors™ coefficient of correlation (0.71 + 0.71 > 1)** or mutual information (1 + 1 > 1)*°. In
addition, due to its scenario insensitivity, mutual information does not change if the volume B, is the
double of B,, when clearly the signal S; becomes more valuable than the signal S, in terms of
reducing uncertainty about the volume B. If B; = 100 (remaining B, = 50, etc.), the nz property (eq.
18) remains valid but with higher weight to signal S, i.e., n”*(B|S1) + 1’ (B|S;) = 0.8+ 0.2=1.

The key concept used in the eq. (18) was independence. Following Breiman (1969, chapter 4),
independence of random variables is a strong condition; independence is a family or hereditary
property. It is illustrated by the following known results (e.g., Breiman, 1969), which will be next

used in the full revelation theorem for independent signals.
Lemma 2: Let the signals S;, Sy, ..., S, be independent random variables. Then:
(a) Any smaller group of these variables is also independent;
(b) For any functions f, g, ... , h, the variables f(S)), g(S>), . . ., h(S,), are independent; and

(c) Functions of disjoint groups of these variables are independent (e.g., f(S;) and g(S,, S3) are

independent).

The full revelation theorem for independent signals is presented below. It can be used directly to

know the participation of each variable in the full revelation process over the variable of interest X.

Theorem 2 (Learning measure decomposition): Let the signals S;, Sy, ... , S,, be independent
random variables. We want to learn about X, a random variable with Var[X] > 0. Assume as finite all
the relevant expectations and variances. Let X = f(S;) + g(S;) +. .. + h(S,), where f, g, . . ., h, are

any real valued functions. Then:

% In this simple example, because the function B(S;, S,) is linear, we’ll see that the correlation-square p? is equal to 1.
2% Considering base 2 in the logarithms from entropy equation. Other base will not make things better in the general case.



X | S) + X[ S) + ... +N2(X | S =1 (19)
Proof: Appendix C.

This kind of property can be useful also when the variable of interest is a function of a product and/or
quotient of independent random variables, because we can make a logarithm transformation and
apply the theorem. For example, in oil companies and in professional literature the reserve volume B
is estimated considering B as a function of many independent variables. One function used is B(RF,
GV, NTG, ¢, Sw, Bo) =RF x [GV x NTG x ¢ x (1 — Sw)] / Bo, where RF = recovery factor; GV =
gross volume of rock; NTG = % net to gross thickness; ¢ = porosity; Sw = saturation of water; and
Bo = oil volume formation factor. Another function is B(RF, A, h, ¢, Sw, Bo)=RF x (Axhx ¢ x (1
— Sw)] / Bo, where A = area; h = net pay (thickness with oil) and the remaining variables as before.
With the log-transformed X = In(B), we can write X as a sum of functions of independent random

variables, and the theorem 2 holds for X.

In the previous example (Figure 5) with S; and S, independent and B = f(S;) + g(S,), this theorem is
verified: 1*(B | S1) + n*(B | S2) =0.5+ 0.5 = 1. Now, in the same example imagine that the Bernoulli
variables S; and S, are not independent. Even B being a solely function of S; and S,, eq. (19) will not
be valid with the dependence between S; and S,. The intuition is that — in addition to reveal the
existence of oil in its area (direct revelation on B), the signal S; provides also relevant information
about S,. So, we must expect that 1*(B | S;) > 50%. The same reasoning is valid to S, so that also
1°(B | S2) > 50%. Hence, we shall expect that n*(B | S;) + n*(B | S2) > 1. This shows that, although
each individual signal has higher revelation power with the dependence hypothesis (signals are more
valuable), when buying both signals S; and S, we are gathering “excess of information” because

there is overlapping information set with the signals S; and S,.

Now is presented a set of axioms (desirable properties) for probabilistic learning measures. It is
inspired in the famous axiom list of Rényi (1959) for probabilistic dependence measures. Here our

focus is learning measures, whereas Rényi thought in applications like distance from independence.

Axioms for Probabilistic Learning Measures: The following axiom list gives the desirable

properties for a probabilistic learning measure denoted by M(X | S):
A)  M(X|S) shall exist at least for all non-trivial r.v. X and S and with finite uncertainty;

B) M(X| S) shall be, in general, asymmetric;



C) M(X| S) shall be normalized in the unit interval in order to ease the interpretation, i.e.,

0<MX|S)<1 (20)

D) IfXandS are independent = M(X | S) = M(S | X) = 0, because there is no probabilistic
learning. In addition,
MX |S)=0 = zero learning (21)
Where “zero learning” can occur not only for the case of independence. The learning concept is
defined in the specific measure, but its sense must be invariable (eg., the measure of

uncertainty shall be the same for all applications);

E) In case of functional dependence, M(X | S) shall be maximum, i.e., for any real function

f.):

X=1f(S) => MX|S)=1 22)
In addition:

M(X |S) = 1 = maximum learning (23)

Where “maximum learning” means that is not possible to learn more about X, and /earning

concept is defined in the specific measure, but its sense must be invariable;

F)  M(X | S) shall be invariant under linear transformations (changes of scale) of either X or

S, i.e., for real constants a and b, a # 0:
M@X+b|S) = M(X|S) (24)
M(X|S) =MX|aS+Db) (25)

G) M(X | S) shall be practical in the sense of easy interpretation (intuitive) and easy to
quantify/estimate.

H) M(X | S) shall be additive in the following sense: if the information S can be decomposed

into a sum of independent factors S; + S, +... + S,, so that the knowledge of a/l/ these
factors provides maximum learning, then the summation of the individual learning
measures shall be equal 100%, i.e.:

M(X | S) + M(X|S2) + ... + M(X|Su) = 1 (26)

Theorem 3 (Learning measure n°): The proposed learning measure 1” obeys the entire axiom list.




Proof: Note that n” uses the variance as measure of uncertainty. So, learning means that is expected
the reduction of uncertainty measured by the variance. In this way, maximum learning means full
reduction of variance (posterior variance equal to zero) and zero learning means zero reduction of
variance. The Proposition 1 proves most of the listed axioms, in some cases in stronger way. Axioms
A, B and C are proved by Proposition 1 (a), (b) and (c). Axiom D is proved by Proposition 1 (d) and
by the fact that eq. (13) implies in E[Var[X | S]] = Var[X], so proving eq. (21) by the definition of
“zero learning” for n°. Axiom E is proved by Proposition 1 () and by the definition of “maximum
learning”, which implies that E[Var[X | S]] = 0, which implies that n*(X | S) = 1. Axiom F is proved
by Proposition 1 (f) and (g), but with 1> holding for more general cases: g(S) can be any an invertible
(or 1-1) function (not only linear functions). Axiom G is more subjective, but the measure 1> holds
widely in the sense that it has an intuitive interpretation of reduction of uncertainty, in percentage
terms, and can be showed (Dias, 2005) that > can be estimate with non-parametric>’ or with
parametric methods (when applicable), including popular parametric statistical methods like

regressions (linear or nonlinear)” and ANOVA. Axiom H is proved with Theorem 2, in a stronger

(more general) version, because it is valid for any real function (not only linear functions). U

Theorem 3 shows the n” strength as learning measure. Surprising this learning measure has not been
used before in VOI literature, which uses in most cases measures based in likelihood function (that
doesn’t obey most axioms). Now, we will see an application of this learning measure in order to build

the Bernoulli revelation processes, which is useful in applications like oil/gas exploration and R&D.

4 — Bernoulli Revelation Processes

In order to evaluate the effect of a binary signal” S over another binary r.v. X, we must study the
dependence relation between two Bernoulli distributions, i.e., the joint distribution between X and S,

the bivariate Bernoulli distribution.

Bivariate Bernoulli distribution is defined with three parameters: the two parameters that define the
marginal distributions (success probabilities p and q) and a third parameter that establishes the

dependence between the Bernoulli marginal distributions. The later can be, e.g., the joint success

" Note that * is non-parametric because it is related only with variances, not assume a specific type of distribution.

2 If the correct regression, in the sense of minimization of the mean square error, is linear (e.g., X and S are normal r.v.),
1’ is equal the squared-correlation coefficient p; if a non-linear regression is correct, then n’is R%, the regression fitting
factor.

* Examples: a neighboring well can reveal success or failure (see example Figure 1); a 3D seismic record can indicate
success (indicative of favorable oil reservoir structure) or failure; a R&D project phase can reveal success or failure, etc.



probability p;; = Pr(X = 1 and S = 1). However, later we’ll replace p;; by n°. Table 1 presents the

bivariate Bernoulli distribution as well the univariate marginal distributions.

Table 1 — Bivariate Bernoulli Distribution and Marginal Distributions

Signal S (eg.: seismic) Marginal
distribution of
S=1 S=0 X (CF)
Variable X X=1 P11 P1o p
(eg.: chance factor) X=0 _
Po1 Poo l-p
Marginal Distribution of S q l1-q

Without loss of generality, we’ll set X = CF, the exploratory chance factor, but theory can be used for
other applications (like R&D). By notational convenience for Bernoulli revelation processes, instead

the success probability notation p will be used the notation CFy, i.e., p = CF,.

The revelation distribution has two scenarios in this case, conveniently denoted by CF" and CF

CF'= Pr[CF=1|S=1] = E[CF|S=1] 27
CF = Pr[CF=1|S=0] = E[CF|S=0] (28)

So, CFy evolves to CF " or CF~, depending on the signal S. These revelation distribution scenarios
have occurrence probability of q and (1 — q), respectively. Elementary probability theory permits

write the following equations for marginal and joint distributions (to be used in proofs):

CFo =p =pu + po (29)
q = pu + pon 30)
Pit + Pio + Por + poo = 1 (31)

Traditional probability theory defines conditional probability as P(A | B) = P(A N B) / P(B). Hence:

CF'= % (32)
CF = p10 — CFo - p11 (33)
1-q 1-q

Where was used eq. (29) to set eq. (33). By combining egs. (29) and (30) in eq. (31), we get the

probability pgo in terms of more basic variables CFy, q and p;:

Poo = 1 +p11 — CFO —-q (34)



It is easy to prove (or see Kocherlakota & Kocherlakota, 1992, p.57) that CF and S are independent
Bernoulli r.v. if and only if its joint success probability Pr(CFNS) = p;; is equal to the product of the
marginal success probability:

CF and S independent < py; = CFyq 35)

The correlation coefficient p(CF, S) is obtained easily by calculating the covariance, normalizing,

and using the previous equations (or see Kocherlakota & Kocherlakota, 1992, p.57):

P, —CK q

p(CF, S) =
JCF, 1-CF,) q(1-q)

(36)

The multivariate distribution literature shows that are necessary limits of consistence for these
distributions, i.e., given the marginal distributions, it is not possible any dependence intensity
because, e.g., eq. 31 must hold, etc. In particular, full revelation is not possible for any marginal

distributions of CF and S. Any measure of dependence of distributions with given marginals must

obey these limits, which are called Fréchet-Hoeffding bounds (see, e.g., Nelsen, 1999). For bivariate
Bernoulli distributions, the Fréchet-Hoeffding limits for the double success probability and for the

correlation coefficient are respectively (proof: Joe, 1997, p.210):

Max{0, CFy+ q -1} £ pu £ Min{CF,, q} 37

Max{_J CRa _J(I—CFO)(I—q)}S .
(1-CF) (1-q) CF, q

 [Min{CF, , g} (1-Max(CF, , q})
~ \|Max{CF, , ¢} (1-Min{CF, , q})

IA

(38)

Now we are ready to set the Theorem 4, using our proposed learning measure 1° to express
dependence between the marginal distributions. In this theorem, we assume positive dependence that
implies in CF~ < CF, < CF". The case of negative dependence is symmetric: CF* < CF, < CF", with

changes in equations as indicated in the theorem.

Theorem 4 (learning measure n” and bivariate Bernoulli distribution): Let the (non-trivial) marginal

distributions be CF ~ Be(CFy) and S ~ Be(q), linked in a bivariate Bernoulli distribution by the
learning measure n*(CF | S) defined by eq. (7) or by eq.(8). Then:

(a) The revealed success probabilities CF" and CF ", in case of positive dependence, are:



CF*= CF, + |"~9 [CF, (1-CF,) \n*(CF|S) (39)
q

CF = CF, - /IL JCE, (1-CF,) \n}(CF|S) (40)
-q

In case of negative dependence, eqs. (39) and (40) hold, but inverting the signal after CF,.

(b) The learning measure 0 in this case is equal to the square of correlation coefficient p:

(pn - CF() q)z

2 2
N (CF|S) = p°(CF,S) = (41)
CF, 1-CF)q(1-9
(¢) The learning measure 1’ in this case is symmetric:
X eS~Bernoulli = 1’(CF|S) = n*(S|CF) (42)

(d) The learning measure n° in this case is equal to zero if and only if CF and S are

independent:

N’(CF |S) = 0 < CF and S independent 43)

(e) To assure the bivariate Bernoulli distribution existence, the Fréchet-Hoeffding bounds in

terms of 1%, being allowed learning with positive or negative dependence, are given by:

ax{ CF, q (1—CF0)(1—q)}

0 < n%(CF |S) < Max (-¢h) (-9 g
Min{CF, , q} (1— Max{CF, , q})

’ Max{CF, , q} (1-Min{CF, , g})

(44)

Proof: Dias (2005). Provided under request, it is based in algebraic manipulation of previous

equations presented in this chapter and equations from Theorem 1, in most cases.

The equations from theorem 4 solve important practical problems such as the example presented in
Figure 1, a portfolio of dependent exploratory assets, and option games problems such as the case
presented in Dias & Teixeira (2004): an oil exploration game with information spillover with
cooperative Nash bargain with disagreement point being an equilibrium from a war of attrition game.
Dias & Teixeira (2004) used different values for the case of bargain (private information is revealed)
and for the war of attrition case (only public information can be revealed), with different values of 1>

in each game (bargain with higher n*). Another example was a real business valuation to enter in a



long-term oil exploration in a new international basin, considering the information revelation effect

cause by the activity of wildcat drilling. The information structure used in these problems is simply:

Z = {S,n*(CF|S)} (45)

With this information structure plus the prior distribution (here defined by CFy), we solve all related
problems. However, there is a way to simplify even more this class of problems, which is useful
mainly for sequence of signals generating a Bernoulli revelation process. This simplification is the

assumption that the chance factor CF and the signal S are exchangeable r.v. (see, e.g., O’Hagan,

1994, p. 112-118, 156, 290). This class of symmetrically dependent r.v. has been assumed intuitively
in many oil exploration models of dependent prospects (e.g., Wang et al., 2000). In the case of two
Bernoulli r.v., exchangeability implies that the marginal success probabilities are the same, and many

equations simplify, as indicated by Proposition 2 below.

Proposition 2: Let CF and S be non-trivial Bernoulli exchangeable r.v., with the bivariate Bernoulli

distribution defined by the success probabilities CFy and q and by the learning measure n°. Then:
(a) The marginal distributions are equal. The converse also holds, i.e.,

CF and S exchangeable & CFy=q (46)

(b) The full revelation (n” = 1) is always possible for any non-trivial values of CF, and q. That

is, the Fréchet-Hoeffding bounds are not restrictions anymore:

Fréchet-Hoeffding bounds: 0 < 112 <1 “47)
(c) The revealed success probabilities CF" and CF ", in case of positive dependence, are:
CF" = CFy + (1-CFy) n (48)
CF = CFy — CFy 1 (49)
In case of negative dependence, eqs. (48) and (49) hold, but inverting the signal after CF,.

Proof: Dias (2005). Provided under request.

Lemma 3: Let CF and S be non-trivial Bernoulli r.v., with the bivariate Bernoulli distribution
defined by the success probabilities CF, and q and by the learning measure n°. The necessary

condition for full revelation of CF is that CF and S be exchangeable r.v.:

N(CF|S)=1 = CF and S exchangeable r.v. (50)



Proof: Dias (2005). Provided under request.

Note that in eqgs. (48) and (49) are used the positive square root of the proposed learning measure,
i.e., . In this way, the revealed success probabilities CF" and CF ~are linear functions of 1. By using

these equations, it is easy to see that the difference of revealed success probabilities is simply n:
CF" - CF~ = n (51)

Figure 6 below shows the revealed success probabilities CF " and CF ", in case of positive dependence

for many values of 1. Note that the variation is linear and the chance factors difference is 1.

1.0 .00
—4—CF+ -
0.9 +—

—=—CF- 0.79
0.8

0.7 065

06 0.58 /

0.51

0.5 -
0.4 0.37

0.3
0.2

0.1 63

[III] T T T T T T T T T

0% 10% 20% J0% 40% A0% 60% F0% 80% 0% 100%
Square-Root of Expected % of Variance Reduction 7

Revealed Chance Factors

Figure 6 — Revealed Chance Factors x Square-Root of Expected % of Variance Reduction

With these equations and concepts about bivariate Bernoulli distributions, we are ready to study

Bernoulli revelation processes, starting with some definitions.

Definition. Exploratory discovery process: is a sequence of learning options exercises that results
in a discovery. In general, these learning options have different learning costs, different time to learn,
and different revelation powers (that can measured by n). In oil exploration this sequence can be
magnetic search, gravimetric search, seismic record search, drilling of one or more wildcat wells. In

R&D, this sequence can be the R&D phases.

Definition. Exploratory revelation process: is the probabilistic effect over the interest variable
caused by the exploratory discovery process. This interest variable (X) can be a chance factor
(success probability), oilfield in-place volume, fluids quality in an oilfield, etc. In R&D can be a

chance factor, MTBF, operational efficiency of a new machine, etc.



Definition. Bernoulli revelation process: is a sequence of revelation distributions generated by a
sequence of bivariate Bernoulli distributions that represents the interaction between a sequence of

signals S with the chance factor of interest CF.

In particular, we focus the exchangeable revelation Bernoulli processes. In this way, given the prior
distribution (i.e., CFy) and a sequence of ny, k = 1, 2, ..., we can construct all the revelation process
because the success probabilities for the signals Sy are automatically defined with the exchangeable
assumption. For example, in case of positive revelation with the first signal S;, the success
probability for the second signal also rises to CF" (to be exchangeable, see eq. 46). This simplifies
the construction of revelation process because the sequence of information structures comprises only
a sequence of Nk and the exchangeability assumption. We assume that the signal revelation power n
is independent of the CF scenario (changes only with k), only the signal success probability changes

with the scenario. Some figures below will make clear these points.

Revelation Bernoulli processes can be non-recombining or recombining. Figures 7 and 8 show,
respectively, non-recombining and recombining exchangeable revelation Bernoulli processes with
two signals. Inside the rectangles are the current (revealed) chance factor success probabilities. Each

vertical set of rectangles is the set of scenarios from the revelation distribution after each signal.

1° Signal 2° Signal Revelation Distribution
[after twio signals)

| 0808 fison cF

144% CF*~

CFU -
144% CF "

256% GQF
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of variance reduction . 1 = 40% > = 20%

Figure 7 — Non-Recombining Exchangeable Revelation Bernoulli Process



1° Signal 2° Signal Revelation Distribution
{after two signals)

56% CF"
v CE'-
19, GCF -
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M = 40% Th = 28.6%

Figure 8 — Recombining Exchangeable Revelation Bernoulli Process

Figures 7 and 8 show also the probability of occurrence for each scenario (in red, outside the
rectangles), after the second signal. In order to recombine, given CF,, we must use a specific and
decreasing sequence of ny, as showed in Figure 8 (note that ny = 28.6% < n;). We’ll return to this
point. The recombining revelation process resembles the binomial lattice used in discrete-time option
pricing. But here we have discrete-event process. Figure 9 shows this recombining process after 10

signals, drawn in a format that resembles the binomial.
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Figure 9 - Recombining Exchangeable Revelation Bernoulli Process with 10 Signals



The revelation process in Figure 9 was built with only two inputs (plus the assumptions of
recombining and exchangeable process): the prior chance factor CF, (= 0.3) and the first learning
measure 1, (= 80%, that implies in 1; = 89.4%). It is easy to show that any subsequent 1 in this
process is given by the simple equation, knowing only the first one (n;) in the sequence. This
equation also shows that the 1 are decreasing in k in this exchangeable recombining process.

We’ll see that exchangeable recombining Bernoulli revelation process, despite of the decreasing
(average) posterior variance, never converges to the full revelation case because the specific
decreasing schema for n, (eq.52)*". Figure 9 used a very high initial value for 1 in order to highlight
another point: Theorem 1(a) says that in the full revelation limit the revelation distribution converges
to prior distribution. In this case, the prior distribution is a Bernoulli one, which has only two
scenarios (1 with probability CFy and 0 with probability 1 — CF;). By looking the “diffusion”
revelation process from the last three figures, the number of revelation distribution scenarios rises
without limit (k + 1 scenarios for the recombining case). Is it a paradox? No! Even without
converging to full revelation, the high initial value for ny in Figure 9 makes the revelation
distribution after 10 signals close of the full revelation case and we can see in Figure 10 the

histogram for the revelation distribution, which will solve this paradox in an intuitive way.
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Figure 10 — Histogram for Revelation Distribution After 10 Signals

3% But increasing (with k) or constant 1, sequences always converges to full revelation when k — 0. It is easy to see this:
after each signal Sy, the average CF variance is reduced by the factor (1 — 1), and after infinite signals, the infinite
product of these factors reduces the variance to zero if 1 is constant (e.g., 0.9'® = 0) or if 1, increases with k.



Note in Figure 10 that the middle scenario values have small probabilities and the extreme scenarios
(near 0 or 1) has most of probability mass. This is not coincidence: as the number of signals increase,
the probability mass migrates from middle to the extreme scenarios. In case of convergent revelation
process, when k — oo all the probability mass in the middle scenarios go to zero and the scenarios 0
and 1 receive all the probability mass. Note in Figure 10 that the scenario near the value 0 (0.003) has
probability approaching to 1 — CFy, = 70%, whereas the scenario near 1 (0.992) has probability
approaching to CFy = 30%.

We said that recombining exchangeable revelation Bernoulli processes don’t converges to full
revelation. The revelation process presented at Figure 8 (CFy = 0.6 and n; = 0.4), after a large

number of signals, has its mean posterior variance as % of prior variance showed at Figure 11.
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Figure 11 — Partial Convergence of a Recombining Revelation Process

It is not by chance that this mean posterior variance converges to 0.6 (= 1 — 1) of the initial (prior)
variance. Some algebraic manipulation shows the recombining exchangeable revelation Bernoulli
processes converges only to partial revelation in which the mean posterior variance as % of prior

variance is exactly 1 —n;. Equation 53 formalizes this partial convergence.

N n
lim J](1 - =1- 53
e k:l[ [1+(k—1)1]1]2J b (53)

Note that the term inside the parenthesis is the factor (1 — m?), which reduces the average CF
variance, combined with eq.(52). Although recombining exchangeable revelation Bernoulli processes

never converges to full revelation (assuming non-trivial cases with n; # 1), the study of these



processes is important because: (a) it is very simple; (b) the number of scenarios doesn’t “explode” as
in the non-recombining processes (= 25); and (c) can be more realistic in some practical cases. An
example for the latter point is a petroleum basin: even after a very large number of wildcats drilled in
a basin (e.g., shallow waters in Gulf of Mexico), the cumulative knowledge is not sufficient to say

that one area has or not petroleum, although the chance factors are or very high or very low.

The recursive equations to calculate the revealed CF scenarios in a (not necessarily exchangeable)
Bernoulli revelation process is presented below, with the Figure 12 below, for the recombining cases,

making clear the used notation.

CF; "= CF/_, - ,/1% JCR, (1-CF" ) \n} (54)
k
. _ 1-q; - -
CFk = CFk—l + q—-qk \/CFk—l (I_CFk—l) \/E (35)
k
Sk-1 Sk
T L
CF;*
CF,_,
CF- CFy = CF,"
CF-1
-4 “NCF; -

Figure 12 — General Schema for Recombining CF Scenarios

For the recombining cases, eqs. 54 and 55 provide the same value. For non-exchangeable processes,
we have two variables to adjust the recombination: qx and nx. With the Figure 12 is easy to see that
the revelation distribution scenarios probabilities p;x are obtained recursively with the following
equation, being the scenario i — 1 the upper one and i the bottom one. Assume the value zero for the

probability p when there is no scenario (in the extreme scenarios case).

Pik = Pi-1,k-1 (1 —-CFi_,x-1) + pPi,k-1CFix_1 (56)



An important point in a revelation processes is that, at least in petroleum applications, the event-
indexed scale (signals) is very different of time-indexed scale. By observing the event-diffusion
process, such as the one displayed in Figure 9, in case of positive revelation, increases the chance of
a rapid new exercise of the learning option (signal), because many prospects in the basin can become
“deep-in-the-money” with this higher CF, a cascade effect. In case of negative revelation, the
opposite occur: firms will postpone the wildcat drilling (exercise of learning options generating
signals) in that basin. So, time run faster in the upper branches of Figure 9 than in the bottom
branches of this event-driven diffusion process. This is an additional argument to classify technical

uncertainty modeling with traditional Brownian models as “too rough” or inadequate.
5 — Conclusion

In this paper was presented a theory for technical uncertainty modeling with focus on real options
and option games applications. This theory is based in the concept of conditional expectations. The
distribution of conditional expectations is here named revelation distribution in order to highlight the
property of always to reduce the process variance in average terms (process towards the truth about a
variable of interest). The revelation distribution properties are useful in a Monte Carlo framework to
solve complex real options problems with both technical and market uncertainties. The paper link the
revelation distribution concept with a proposed learning measure 12, which has surprising adequate
mathematical properties and an intuitive interpretation as expected variance reduction with the
learning process. A list of axioms for learning measures is proposed and showed that some known
measures used in VOI problems are not so adequate to model the learning power of a learning
alternative. This learning measure is used to build the simplest revelation process, the Bernoulli
revelation process, which is useful for real asset portfolio valuation in oil exploration problems, in
option games applications and in R&D modeling. Some specific Bernoulli revelation processes were
studied, such as the recombining process that has an interesting simplicity for applications. Many
other revelation processes can be studied for specific applications and in order to enrich this theory
on technical uncertainty and learning options exercises. This paper can be considered only a starting

point to this goal.



APPENDIXES

A) Definition of Uniformly Integrable Sequence

The r.v. sequence Rx 1, Rx2, ... Rx is called uniformly integrable if, for all € > 0, exists a M > 0 so

that foralln=1,2, ... :

| IRy, | 4P <&
{ Ry, o =M} (A1)

Uniform integration is a necessary condition for a sequence of integrable r.v. {Rx,} to converge in
L' ie.,to converge in mean to a integrable r.v., which in our case is lim, _, o E[|[Rxn — Xs| ] = 0. The
integral in the eq. (Al) is of Lebesgue-Stieltjes type, i.e., P is a probability measure or simply the

cumulative probability distribution function P(Rx ).

B) Proposition 1 Proof

(a) This is a trivial property considering the assumption Var[X] > 0, but finite, and the assumption of

finite Var[S]. O

(b) The measure 1> is in general asymmetric if at least one example exhibits asymmetry. This

example was presented in the text (see Figure 3). U

(c) The egs. (7) and (8) show that: by (8) 0’ is a quotient of variances and so it cannot be lower than
zero due to variance definition. The eq. (7) shows that the maximum value is equal to 1, because 1 is

maximized by minimizing E[Var[X | S]], which has a minimum value at Var[X | S]=0 for all s € S,

i.e., for E[Var[X | S]]=0=n*X|S)=1. O

(d) If X and S are independent r.v., then E[X | S] = E[X] and E[S | X] = E[S] (elementary
independence property, see, e.g., Williams, 1991, p.88). In addition, the variance of any r.v. Y is
defined by Var[Y] = E[ (Y — E[Y])* ]. Hence, the revelation distribution variances from Rx(S) and
Rs(X) are both equal to zero because:

Var[Rx(S)] = E[(E[X | S]~ E[ E[X | S] )] = E[(E[X | S] - E[X])*] =0

Var[Rs(X)] = E[(E[S | X] - E[ E[S | X] 1)’ = E[(E[S | X] - E[S])" ] = 0
Where were used the Theorem 1(b) and the mentioned elementary independence property. If the

revelation distribution variances are equal to zero, the measures (X | S) and 1*(S | X) are also



equal to zero, because these learning measures are normalized revelation distribution variances. This

proves eq. (12) and the return (<) in eq. (13). In order to prove the the direction = in eq. (13), note

in eq. (8) that n”*(X | S) = 0 = Var[Rx(S)] = n*(X |S) Var[X] = 0 if Var[X] > 0. O

(e) If n*(X|S) = 1, eq.(7) = E[Var[X|S]] = 0 = E[(X — E[X|S])*] = 0 and so, with probability 1 =
X =E[X|S] = X is measurable by sigma-algebra of S, and hence we can write X = g(S).

In Hall (1970, p.342), is used the axiom that, if a dependence measure is equal to 1 = X = g(S), but
without the return («<=). In Hall, the return X = g(S) = dependence measure equal to 1, is not
considered necessary. In these more theoretical studies, Hall wished to study cases with infinite
variance of X (without interest here). By assuming that Var[X] is finite, then holds the return for the
measure 1. The proof for the return (<) is even simpler: if S is revealed, then by function
definition, X = f(S) is unically determined. So, E[Var[X | S]] = 0 and hence n*(X | S) = 1 by eq. (7).
According Hall (1970, p.342), in case of infinite variance of X, when the knowledge of S reduces the
variance from infinite to a finite value, this can be considered a complete state of dependence, in an
analogous way of the case of finite X variance, in that S reduces the X variance from a finite value to

the zero value. In applications of this paper in that Var[X] is always finite, writing the stronger

property version (<) is more convenient. 0

(f) The proof is simple. Applying eq. (7) for the variable Y = aX + b:

+tb] - +
n(aX+b|S)= Var[a X +b] — E[Var[a X + bS] N
Var[a X + b]
2 2
n@X+b|8)=2 Var[X] ~ @ E[Var[X | S]]
a” Var[X]
Because a # 0, we can simplify (by cutting a’) to get n*(X | S). .

(g) The equality case if the function Y = g(S) is 1-1 is because the inverse S = g™'(Y) exists, i.c., g’
is a function that, by definition determines uniquely S if we know Y = g(S). So, knowing g(S) is

equivalent to know S.

If g(S) was not 1-1, the knowledge of g(S) would be lower than the knowledge of S, e.g., if Y = S*
then the value Y = 1 could be either due to S =1 as S = — 1. Then, the intuition said that n*(X | g(S))
shall be lower than n*(X | S). Formally, Rényi (1970, p.278-279) shows that n*(X | S) is the supreme
of p*(X, f(S)) for any real function f(S). This implies that n*(X | S) > p*(X, f(S)) for any real function
f(S). If this function is any, this includes the function f(S) = E[X | g(S)]. So:



(X 18) 2 p*(X, E[X | &(S)])
Rényi also shows that n*(X | Y) = p*(X, E[X | Y]). By making Y = g(S) we get n*(X | &(S)) = p*(X,

E[X | g(S)]). By substituting in the previous inequality, we get: 1*(X | S) > n*(X, g(S)) U

(h) This property was suggested by Hall (1970) as one dependence axiom in order to related with the

correlation coefficient. This was proved in Dias (2005), which is provided under request.

C) Theorem 2 Proof

Recall the definition of n*(X | S;) = Var[E(X | S;) ]/ Var[X]. So, the left side of (19) is:
(XS + N (X[ S2) + ... + (X | Sy) =

_ Var[ E(X|S,)] N Var[ E(X|[S,)] - Var[ E(XS,)] _
Var[X] Var[X] o Var[X]

Var[ E{f(S,) +&(S,) +...+h(S,) [S,}1+ ...+ Var[ E{f(S,)+g(S,) +...+h(S,) [S,}] _
Var[f(S,) +g(S,) +...+ h(S,)]

But E{f(S;) | Si} = (Si). Due to independence between S; and S;, we have E{f(S;) | S;} = E{f(Si)} and
Var[f(S:) + g(S;)] = Var[f(S))] + Var[g(S;)]. Hence:

_ Var[{(S,) + E{g(S,)} +...+ E{h(S,)}]1+ ...+ Var[ h(S,) + E{f(S,)} + E{g(S,)} +... + E{k(S, )} _
Var[f(S,)]+ Var[g(S,)] +...+ Var[h(S, )]

However, the unconditional E{f(S;)} is not a random variable. It is a number known at the initial

moment, so that Var[E{f(S;)}] = 0. Hence, many terms from the above equation vanish:

Var[ f(S,)]+ Var[ g(S,)]+... + Var[h(S,)] _ 1

2 2 =
NX[S)+...+n(X[S) = Var[f(S,)] + Var[g(S,)] +... + Var[h(S,)]
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