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 Abstract 

This paper proposes a theory for technical uncertainty with main focus on learning real options and 

real option games applications. It discusses information revelation as processes of reduction of 

uncertainty and proposes the expected percentage of variance reduction as learning metric to 

simplify the complex analysis of investment decisions under uncertainty in which the technical 

uncertainty about a real asset is relevant. This learning measure has a direct link with the distribution 

of conditional expectations of a variable of interest, where the conditioning is the set of new 

information that can be revealed by a cost (learning option) or by waiting as free rider (option game 

application). In addition, it is shown that this learning measure has many favorable mathematical and 

practical properties. A set of axioms for (probabilistic) learning measures is presented. This paper 

also analyzes with some detail the simplest revelation process, namely the sequential bivariate 

Bernoulli process, including the analysis of Fréchet-Hoeffding limits and exchangeable bivariate 

Bernoulli process. Examples in petroleum exploration and in portfolio of real assets, illustrate this 

methodology.  
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1 – Introduction and Literature Review 

The modern theory of stochastic processes has been successfully used in real options applications in 

which the future value of a project or real asset is uncertain due to market uncertainty in prices, 

demand of a product, costs, etc. This theory is well developed in real options textbooks like Dixit & 

Pindyck (1994), Trigeorgis (1996), Copeland & Antikarov (2001), etc. However, in many 

applications (e.g. petroleum exploration, R&D) is very relevant the technical uncertainty about the 

true values of specific parameters of a project. In petroleum exploration, the oil company faces 

uncertainty on the existence, volume and quality of petroleum prospect when deciding about the 

wildcat (pioneer) well drilling investment. In R&D, there is uncertainty about the technical success of 

a specific project, e.g., a pharmaceutical firm faces uncertainty about the success of a drug test phase. 

Technical uncertainty is related with the project specific characteristics, i.e., the profit function 

parameters and usually can be reduced by investing in information (exercising learning options). For 

instance, in a R&D of a new machine, there is uncertainty about the MTBF (mean time between fails) 

and the prototype phase and/or a pilot test phase can reduce this uncertainty.    

Some papers (e.g., Cortazar & Schwartz & Casassus, 2001) use stochastic processes like the 

geometric Brownian motion (GBM) to model technical uncertainty, which is not adequate for many 

reasons. One reason is that, under GBM hypothesis, the variable changes by the simple passage of 

time, whereas in most real applications the variable with technical uncertainty changes only with the 

exercise of a learning option. So, the filtration for technical uncertainty is indexed by events1, not by 

the time, as in almost all stochastic processes. Other reason is that the probabilistic laws for known 

stochastic processes are not adequate for learning processes on variables with technical uncertainty, 

e.g., in GBM models the variance is unbounded, whereas for learning processes this variance is 

bounded by the prior distribution variance, see Theorem 1(a) below. 

First, we must highlight that the concepts of information and uncertainty are connected. The paper 

focus is much in the spirit of Arrow (1973, p.138): “When there is uncertainty, there is usually the 

possibility of reducing it by acquisition of information. Indeed, information is merely the negative 

measure of uncertainty”. This sentence holds mainly for technical uncertainty, e.g., generally we 

cannot reduce the uncertainty in oil prices by investing in information, but we can reduce the 

uncertainty in oil reserve volume by investing in appraisal wells, i.e., by exercising learning options. 

                                                 
1 The time between events can take months or years. In most cases the events are endogenous in the model (are options). 



This paper proposes a theory for the process generated by the exercise of learning options – called 

revelation process, as an adequate approach to consider the technical uncertainty issue in real options 

applications. We want to solve investment under uncertainty problems with opportunities to invest in 

information or to receive new relevant information from an external source (e.g., externalities from 

other firm investing in information) in order to learn about technical parameter values of a real asset. 

In many cases, we have a compound option, the learning option(s) and the project development 

option, i.e., we have alternatives of investment in information in order to know better the project true 

value (e.g., a pilot project to test a technology, a market test to know better the demand function, an 

appraisal well) and the option to develop the project (e.g., a full scale production plant).   

In order to study learning options, this section consider the classical literature on economics of 

information focused on value of information (VOI) issue. The classical theory of VOI is well 

summarized in Lawrence (1999), which uses the general concept of informativeness (θ) to handle 

VOI problems, showing the necessity of a learning measure for VOI problems. In some statistical 

applications, like experimental design, θ is the sample size; in classical VOI applications has been 

used the concept of likelihood of information. In this paper (section 3) is developed a very general 

theory for probabilistic learning measures and is proposed the concept of expected percentage of 

variance reduction as the best θ measure for most VOI applications. However, it is almost impossible 

to find out a specific learning measure applicable to all VOI problems. In this aspect Arrow (1984, 

Preface) wrote: “it has proved difficult to frame a general theory of information as an economic 

commodity, because different kinds of information have no common unit that has yet been identified”.  

In order to illustrate the Arrow’s statement, let us compare two measures of uncertainty; namely the 

concept of entropy – from the information theory literature, and the traditional concept of variance. 

Many important researchers (like Arrow, Marschak, etc., in the 50’s) considered the entropy concept 

in VOI problems. Consider a univariate discrete distribution with prior p(x). In Shannon sense (see 

Shannon & Weaver, 1949), entropy (H) is a measure of uncertainty2 defined by: 

H(X)  =  − )]log[p(x )p(x ii∑
i

 

Note in the above entropy definition that does not matter the scenario values, only the probabilities of 

different scenarios are considered. This feature has advantages, such as the simplicity to represent the 

                                                 
2 Assume that 0 . log(0) = 0. In case of no uncertainty (here named full revelation) the entropy goes to zero because log(1) 
= 0. The logarithm base in the entropy equation is arbitrary. Many texts use base 2, so that entropy is measured in “bits”. 



uncertainty. But in valuation problems where the magnitude of losses or gains matters3, this feature 

can be a drawback or will need an additional variable to conjugate probabilities and scenario values.  

Parties of the entropy measure will argue that the uniform distribution represents the highest degree 

of uncertainty over a bounded interval in the real line and it is consistent with the entropy concept, 

but not with the variance one. This argument can be convincing in many applications, given the 

popularity of the entropy measure in telecommunications, some branches of statistics, Komolgorov 

complexity theory, etc. However, this seducer argument is not coherent with applications in both 

corporate finance4 and in most cases from the economic value of information literature.  

 Consider a portfolio with uncertain returns represented by only three discrete scenarios denoted by 

ΠR = {− 10%; 10%; 30%}. The uniform distribution – which has the highest possible entropy, 

assigns probabilities H = {33.3%; 33.3%; 33.3%} for these scenarios, whereas one non-uniform 

distribution with higher variance could assign probabilities V = {45%; 10%; 45%}. With the same 

expected return, risk-averse investors using expected utility theory in general and mean-variance 

optimizers in particular, will indicate the lower entropy (but higher variance) set V as “riskier” than 

H. Recall that mean-variance is a key concept in the modern portfolio theory, and used in the popular 

CAPM (capital asset pricing model) to set appropriate risk-premium.  

Now, consider a real asset case. What if we consider that the value of this asset has technical 

uncertainty? Technical uncertainty has zero correlation with the market portfolio so that it does not 

demand risk-premium from diversified investors. Even in this case, we will prefer the set H than the 

set V. In this case the relevant issue is not the risk-premium demanded (zero in both H and V) but the 

results from the economic optimization under (technical) uncertainty. To see this, consider the same 

probabilities sets H and V, but the scenarios are the possible reserve volumes of an oilfield with ΠR = 

{200; 300; 400}, in million barrels. The optimal investment in processing plant capacity, pipeline 

diameter, number of wells, etc., depends on the true volume scenario of this reserve. If we must 

develop the oilfield project without additional information, for capacity design purposes in general 

we will minimize the error by choosing the expected value of this volume, equal to 300 for both 

distributions (H and V). However, is expected a lower economic value for this real asset with the 

distribution V because the probability of either over investment (if the true scenario is 200) or under 

                                                 
3 This is not a problem in communication channel design because the scenarios are messages, not numerical amounts. 
4 There are some adepts of the so-called log-optimal portfolio approach, which uses the concept of entropy. But the next 
example and mainly the Paul Samuelson criticism in the 70’s make difficult to consider this alternative portfolio theory. 



investment (if the true scenario is 400) is much higher with V than with H. For the other side of coin 

– the side of the opportunity to invest in information, the set V in general will provide a higher value 

of information than the set H, again due to the higher probability with the former of either over or 

under investment without knowledge of the true scenario.  

So, the concept of variance as measure of uncertainty is in general more useful than the concept of 

entropy by the point of view of corporate finance and economics of information. Based in the concept 

of variance, sections 2 and 3 advocate that a learning measure based in the variance concept, namely 

the (relative) expected variance reduction, denoted by η2 (we will see later the reason for this 

nomenclature), has very convenient mathematical properties for learning measure applications. The 

measure η2 obeys a set of reasonable axioms for probabilistic learning measures, whereas the popular 

information likelihood doesn’t obey these axioms. Likelihood is useful in many statistical cases, but 

it is not so useful in VOI applications, contrary to conventional wisdom. This paper defends the 

measure η2 replacing likelihood and others concepts in VOI applications, especially in the dynamic 

real options setting.  

Motivated by oil exploration applications, this paper studies a special technical uncertainty process 

generated by a sequence of learning options exercises: the Bernoulli revelation process, which is a 

sequence of bivariate Bernoulli distributions. The chance factor (CF) of oil existence in a prospect is 

a variable with technical uncertainty that is very important for exploratory investment decisions. CF 

is a Bernoulli random variable, which has two scenarios: 1 (success, existence of oil with probability 

p) and 0 (failure, with probability 1 – p). The exercise of a learning option, such as the drilling of a 

correlated prospect, is the signal S, which is also a Bernoulli random variable. The dependence 

degree between the these two Bernoulli variables (CF and S) must be studied in the context of 

bivariate Bernoulli distribution and this paper shows that the (positive) square root of η2 (i.e., η) is an 

adequate dependence measure for learning purposes. In this specific case of bivariate Bernoulli, η is 

equal to the correlation coefficient. Using this measure, the paper studies some Bernoulli revelation 

process, highlighting the exchangeable bivariate Bernoulli distributions with recombining scenarios, 

which resemble the binomial processes used in discrete option pricing.  

This paper is divided as follow. Section 2 presents a simple example in petroleum exploration 

economics that highlights the necessity of learning measures for both real options portfolio and 

option games applications. Section 3 presents the main results with propositions on revelation 

distributions, the properties of η2 (the proposed learning measure), the learning decomposition 



theorem, axioms for learning measures, the concept of flexible information structures, and the 

potential applications for these concepts. Section 4 shows the case of Bernoulli revelation processes, 

very important in practical applications (e.g., petroleum exploration and R&D) and in theoretical 

studies (it is the simplest revelation process), including the Fréchet-Hoeffding bounds for a learning 

process, the measure η2 in this Bernoulli context, and the simplification with interchangeable 

Bernoulli variables. Section 5 presents the concluding remarks and some suggestions for further 

research. 

2 – Portfolio of Real Assets: A Simple Motivating Example  

Here and in most of this paper, consider only technical uncertainty and investment optionality, for 

expositional clarity. However, the paper will also present a case in which technical uncertainty 

interacts with market uncertainty. In this section, to motivate to the necessity of a learning measure in 

both real options and option games applications, consider the following example (based in Dias, 

2004). An oil company owns the rights over a tract with two exploratory prospects. For each 

prospect, the value of the drilling option exercise is the expected monetary value (EMV)5, given by: 

EMV  =  − IW  +  [CF . NPV]                                                               (1) 

 Where IW is the drilling investment in the wildcat well (option exercise price), CF is the chance 

factor about the existence of an oilfield (detailed below), and NPV is (conditional to exploratory 

success) the net present value of the oilfield development6. The chance factor is the parameter with 

technical uncertainty with the simplest probability distribution – the Bernoulli distribution, which has 

two scenarios (1 = success and 0 = failure) and one parameter (p) named success probability. So, we 

use CF ~ Be(p) to denote this Bernoulli distribution. The expected value of a Bernoulli distribution is 

the success probability, i.e., E[CF] = p. Consider that the two prospects are symmetric, i.e., they have 

the same parameters and so the same EMV. Assume the numerical values IW = 30 million $, E[CF] = 

p = 30% and NPV = 95 million $ for both prospects. So, the EMV is negative: 

EMV1  =  EMV2  = − 30 + [0.3 x 95]  =  − 1.5 million $ 

Apparently this two real assets portfolio is worthless. Indeed, if the prospects in this portfolio were 

independents, the two-prospects portfolio value would be zero. However, we will see that the 

                                                 
5 EMV is used in exploration economics and it is a concept analog to NPV (net present value). 
6 In a more general case (with market uncertainty), instead the NPV we have the value of the development option. Here 
we can also imagine that the drilling option is expiring, so that the option to wait values zero. 



portfolio value can be strictly positive if they are dependent. Suppose that these two exploratory 

prospects are in the same geologic play7, so that the prospects are dependent with positive 

correlation. If these prospects have positive correlation, in case of success in one prospect, the 

success probability p from the second prospect chance factor (CF2) must be revised upward (to CF2
+) 

and in case of failure p must be revised downward (to CF2
−). Figure 1 illustrates this learning 

updating with the information revelation generated by the first option exercise.  

 
Figure 1 – Effect of the Well 1 Signal on the Chance Factor CF2  
After the signal S1 (information revelation with the well number 1 drilling), Figure 1 shows two 

updated scenarios for the variable of interest CF2: the good news case, CF2
+ = E[CF2 | S1 = CF1 = 1], 

and the bad news case, CF2
− = E[CF2 | S1 = CF1 = 0], so we have a simple two-scenario distribution 

of conditional expectations, where the conditioning is the information revelation. The distributions of 

conditional expectations are here named revelation distributions, and a set of properties for these 

distributions will be presented soon.  

The intensity of this CF2 updating process is function of the degree of dependence between the 

prospects and will be discussed with details mainly in the section 4. The probability of a positive 

information revelation (q) is the success probability for the well 1. In this symmetrical example, both 

prospects have the same unconditional success probability (p), so that p = q. In this case these 

random variables (r.v.) are called exchangeable (see section 4). In this example consider that the 

dependence degree makes CF2
+ = 50% in case of success for the well 1. Probabilistic consistency, 

given by the law of iterated expectations (see section 3), demands that CF2
− = 21.43 %. In case of 

bad news (i.e., using CF2
− in the eq. 1), the EMV2 is even worse than the − 1.5 million obtained with 

                                                 
7 The prospects share common geological hypotheses, e.g., existence (or not) of oil migration from the source rock to that 
area with presence of reservoir rock and synchronism for the sequential geologic events.  



CF2. But it is an option so that the prospect 2 will not be drilled in case of bad news and the value of 

the prospect in this scenario is zero. However, in case of good news the prospect 2 becomes attractive 

(EMV2
+ > 0) so that the drilling option is exercised in case of good news. So, the portfolio value is: 

EMV1 + E[option(EMV2)]  =  − 1.5 + [(0.7 x zero) + (0.3 x 17.5)]  =  +  3.75 million $ 

A very different value when compared with the case of independent prospects. Note that the positive 

result is due to both the optional nature of investment drilling and the information revelation 

generated by the first drilling. Because of the assets optional nature, the value of this portfolio is 

higher as higher is the dependence between the prospects. Hence, the real option value a portfolio of 

assets with technical uncertainty is an increasing function of the dependence degree between these 

assets, and the study of learning measures based in the dependence degree between r.v. is demanded.  

Note that in this paper the role of dependence is very different of the traditional portfolio theory for 

financial assets (Markowitz): here there is information revelation by sequential exercise of learning 

options, an active exploitation of dependence, whereas in financial portfolio theory the role of 

dependence is only for diversification purposes. Note that, for learning purposes, is not particularly 

relevant the dependence direction (if positive or negative), whereas for diversification purposes low 

(or even negative) dependence is much better than high/positive dependence. In order to see this, 

imagine in Figure 1 that the signal S1 has negative dependence with CF2, but with the same intensity 

so that the revealed scenarios CF2
+ and CF2

− are only permuted8. The learning with this signal is 

exactly the same because applying the option rule Max(EMV, 0) results in the same portfolio value. 

Hence, insights from Markowitz’ theory is not applicable in portfolio of real options with technical 

uncertainties, even more for the role played by the measure of dependence between the uncertainties. 

Valuation of real assets portfolio per se justifies the study of learning measures. But, there are other 

relevant applications like option games, as in Dias & Teixeira (2004). In order to illustrate this point, 

instead a portfolio owned by a single firm, suppose in the Figure 1 example that firm 1 owns the 

prospect 1 and firm 2 owns the prospect 2. In this case, one alternative is to play a non-cooperative 

game named war of attrition in which one firm wait for the other firm option exercise in order to use 

this information as a free rider. The game prize is the information revelation value that depends on 

the learning intensity given by degree of dependence between the prospects. Other strategic 

alternative is to play a bargain game where again the surplus to be divided is given by the effect of 

                                                 
8 Assuming that the probability of good news for CF2 (here CF1 = 0) remains the same, i.e, 1 – q = 30% in this case. 



the information revelation on the prospects, which depends on degree of dependence (or learning 

degree) between the prospects. In the first case, the free rider works with public information, whereas 

in the bargain game the players work with private information. Public information is only a subset of 

private information and is necessary to differentiate these games with a good learning measure, as 

done in Dias & Teixeira (2004).   

So, in order to quantify interesting real options and option games problems is necessary to study the 

learning degree of a signal over a variable of interest. This is done in the next two sections.   

3 – Revelation Distribution and Learning Measures  

In this section are presented a series of definitions, lemmas, propositions, theorem and a list of 

axioms for probabilistic learning measures. 

Definition. Prior distribution: it is a probability distribution that represents all prior knowledge that 

the decision maker knows about one r.v. (based in Lawrence, 1999, p.5). The prior distribution 

support9 includes all possible values (scenarios) that this variable can assume, while the probability 

density represents the best estimative of the occurrence probability for these scenarios, using the 

current knowledge (prior information). Notation: p(x) is the prior distribution for the r.v. X. 

Definition. Information structure: comprises the space of messages (signals S) plus the joint 
measure of states and messages (Lawrence, 1999, p.16). The information structure I is defined by: 

I   =  { S, p(x, s)}                                                            (2)  

The joint measure is the joint probability distribution of two r.v., p(x, s). This suggests that is 

necessary to study bivariate and multivariate probability distributions in order to analyze VOI 

problems. The above definition suggests also a comparison of information structures to determine if 

one structure is more informative than other. This is a classical statistics theme from the comparison 

of experiments literature (Blackwell, 1951). Arrow (1992, p.169) notes that could be useful even a 

partial ordering for the signals independently of the specific decision problem. In our setting, we will 

include the proposed learning measure η2 into the information structure I plus one additional 

condition, in order to replace the joint probability distribution input. The additional condition will 

depend on the kind of problem (flexible information structure), but with our learning measure η2 into 

                                                 
9 The support of a distribution p(x) is the set of values where p(x) > 0. 



the information structure for all applications of our interest, we can perform the comparison of 

information structures: for the same prior distribution, higher η2 means more informative structure. 

The proposed learning measure η2 is related with the concept of revelation distribution presented in 

Dias (2002). Revelation distribution is a distribution of conditional expectations where the 

conditioning is the information (signal) revealed by the exercise of a learning option. The term 

“revelation” emphasizes a process towards the true value of variable with technical uncertainty, and it 

has been used in related literature (eg., Grenadier, 1999; Childs et al., 2001) and before in the classic 

economics of information literature (eg., Wilson, 1975, p. 186). This term suggest a learning process 

to find out the true state of nature. Denote the r.v. associated with the revelation distribution by RX(S) 

= E[ X | S], where X is the variable of interest with technical uncertainty (e.g., chance factor of an oil 

prospect; reserve volume of a new oilfield) and S is the signal (e.g., the drilling outcome from a 

correlated oil prospect; the information generated by an appraisal well in a new oilfield).    

Definition. Revelation process: is the sequence of r.v. {RX,1, RX,2, RX,3, …}10 generated by a 

sequence of signals S1, S2, S3, … about an interest variable X, which its main characteristic is the 

expected reduction of uncertainty provided by these signals. Revelation process is a probabilistic 

learning process. In the mathematical literature is sometimes referenced as “accumulating data about 

a r.v.” (Williams, 1991, p.96) or as Doob-type martingale (see Ross, 1996, p.297).  

Revelation processes can be considered as stochastic processes, but in general indexed by events and 

not by time, as in most stochastic processes.   This paper is interested mainly in processes with events 

being exercise of learning options, in order to model the technical uncertainty evolution (expected 

reduction of uncertainty) with the investment in information process. One example of revelation 

process indexed by events is the sequential drilling from the appraisal phase after an oilfield 

discovery, which reduces the technical uncertainty about the reserve volume of this field. An 

example of revelation process indexed by time is the one that generally occur with the stock return of 

new firms in the market, the IPO (Initial Public Offering). The stock volatility in this case is 

generally very high in the beginning, but with the passage of time this volatility is reduced (but never 

to zero) as the investors learn about the firm capability to generate return to their stockholders. In this 

case, we have revelation process only during a temporal transient with diffusion of new information 

to the market players. After this transient, the market can be considered efficient to price this stock, 

                                                 
10 We could define this process as a sequence of probabilistic moments from posterior distributions, with the conditional 
expectation distribution being a particular moment. But hardly this definition could be so useful as here proposed.  



ceasing the revelation (reduction of uncertainty) process.  Example of process that is not revelation 

process is the Itô diffusion process (like geometric Brownian or mean reversion processes). 

Definition. Full revelation of X: is the revelation of a scenario c so that Pr(X = c) = 1, where c is a 

constant belonging to p(x) support. In general terms, if the available information is given by the sub-

sigma-algebra Ψ, full revelation of X means that X is Ψ−measurable and, hence, we can write E[X | 

Ψ] = X almost surely (a.s.)11. Intuitively, it means that there is perfect information about the true state 

of nature for the variable X.  

We will see that any revelation process converges12 to an integrable r.v. denoted by X∞ for n → ∞, 

where n is the number of (relevant) signals. But not always converges to the full revelation limit, that 

is, the convergence is not always X∞ = X. Mathematically, a revelation process is the Doob´s process 

(Karlin & Taylor, 1975, p.246 and 295). Note that not all r.v. sequence converges to an integrable 

r.v. X∞. All revelation processes converges because the process {RX,1, RX,2, … RX,n} is uniformly 

integrable (see Appendix A for the definition). Using this, Lemma 1 below shows that this implies 

that the {RX,n} sequence converges to X∞ when n → ∞.  

Lemma 1: Let {RX,1, RX,2, … RX,n} be a revelation process, i.e.,  RX,k =  E[X | ℑk] are defined in the 

same probability space (Ω, Σ, P), being X integrable. ℑk is a filtration13 {ℑk: k ≥ 0}, with ℑk being 

generated by the signals sequence {Sk}. Then, the revelation process is uniformly integrable and, 

hence, when n → ∞, there exists a.s. a limit of RX,n in L1 (i.e., in mean) that is an integrable r.v. 

denoted by X∞, that is also a conditional expectation, i.e.: 

limn → ∞ RX,n   =  X∞  =  E[X | S1, S2, … ]  =  E[X | ℑ∞ ]                            (3)  

Proof: First must be proved that any revelation process is a martingale. Theorem 1(d) below shows 

this. The proof that uniform integrability is sufficient for the martingale convergence in L1 is given by 

the famous Doob´s Martingale Convergence Theorem14 (see, e.g., Brzezniak & Zastawniak, 1999, 

theorem 4.2, p.71-73). The proof that the revelation process is uniformly integrable is done, e.g., in 

Ross (1996, p.319) or in Karlin & Taylor (1975, p.295-296) for Doob-type martingale (and so for 
                                                 
11 In addition, algebraic operations like sum, product and division, don’t destroy measurability  (Gallant, 1997, p.47). 
12 It converges almost surely (with probability 1), which implies that converges in probability, which also implies that 
converges in distribution (Karlin & Taylor, 1975, p.18). 
13 We can interpret the filtration ℑn generated by a sequential information process {S1, S2, … Sn} as a set with all 
available information in the stage n. In technical terms, it is a increasing family of sub-sigma-algebras generated by the 
information revelation, e.g.,  RX, 2  =  E[X | S1, S2]. 
14 This theorem has been used to prove other theorems like the Komolgorov 0-1 law and Kalman filter equations. Here we 
exploit other application for this famous theorem. 



revelation process). Hence, there is a limit given by an integrable r.v. X∞. The proof that this limit is a 

conditional expectation E[X | ℑ∞ ] is given by Karlin & Taylor (1975, p.310)15.   

As the revelation process always converges to some X∞, is redundant the qualifier “convergent” to 

this process, and we will use this qualifier only for the full revelation convergence, i. e., when X∞ = 

X (or Var[X | S1, S2, … , Sn] → 0 when n → ∞). One practical example of convergent revelation 

process is the drilling of appraisal wells in order to reduce the uncertainty about the oil-in-place 

volume from one oilfield. It is convergent because if we drill a very large (infinite) number of wells 

we get the true value of this volume. An example of non-convergent process is the return of IPOs. 

Theorem 1 describes the 4 main revelation distribution properties (distribution of the r.v. RX). These 

properties are: the RX mean, the RX variance, RX in the limit case of full revelation and the martingale 

property for revelation processes (RX sequences). 

Theorem 1 (Revelation Distributions): Let the r.v. X and S two-times integrable (i.e, finite mean and 

finite variance) defined in the probability space (Ω, Σ, P ). The interest variable X has prior 

distribution p(x). The signal S generates the sigma-algebra Ψ, a sub-sigma-algebra of Σ, i.e., Ψ ⊆ Σ. 

Let p(RX) be the probability density of RX = E[X | S], i.e., the revelation distribution of X given S. 

Then, the revelation distribution is almost defined16 by the following properties: 

(a) In the limit case of full revelation, the variance of any posterior distribution is zero and the 

revelation distribution p(RX) is equal to prior distribution p(x). 

(b) The revelation distribution mean is equal to the prior mean of X, i. e.:  

E[RX] = E[X]                                                                     (4) 

(c) The revelation distribution variance is simply the expected variance reduction of X 

caused by the signal S, i.e., the prior variance less the expected posterior variance: 

Var[RX]   =   Var[X]  −  E[ Var[X | S ] ]                                         (5) 

(d) Consider a sequential exercise of learning options generating the signals S1, S2, S3, … and 

the r.v. {RX,n} = {E[X | S1, S2, … Sn]}, n = 1, 2, … Then, the revelation process {RX,1, 

RX,2, RX,3, …} is a martingale. 

                                                 
15 A simple proof: note that RX, n is a function of S1, S2, … Sn, so that the limit X∞ is a measurable function of this 
sequence of signals. Hence, it is measurable with respect to ℑ∞. 
16 Definition: almost defined distribution is a distribution that we know at least the mean, the variance and that belongs to 
a sequential process of distributions with known initial distribution and convergent to a known distribution. 



Proof: See Dias (2002).  

Some highlights: (a) Note that Lemma 1 guarantees that always exists a limit with probability 1 and 

note that Pr(X = c) = 1  ⇔  Var[X] = 0  (see DeGroot & Schervish, 2002, theorem 4.3.1, p.198). The 

remaining of the proof is given by the prior distribution definition itself. This property also claims 

that revelation process variance is bounded by the prior distribution variance. (b) This property is 

known as law of iterated expectations. It can be formulated in a more general fashion by using the 

sub-sigma-algebra Ψ (instead the r.v. S): if RX is any version17 of E[X | Ψ] then E[RX] = E[X], a.s. 

(c) This property is the heart of Theorem 1 and we will see that it is linked with the proposed learning 

measure η2. Variance of RX is very practical in the context of technical uncertainty because the 

revelation distribution variance is analogous to the role played by volatility in the classical (market 

uncertainty) real option problem: as higher is the revelation distribution variance as higher is the 

learning option value. Note also the consistency between (c) and (a): in the full revelation limit, 

E[Var[X | S]] = 0 ⇒ Var[RX]  = Var[X]. (d) This property is useful to study revelation processes and 

it points that the expected values are the same for all the revelation distributions in this sequence. 

Note that revelation distribution does not require risk-adjustment to use the risk-neutral approach (as 

in case of market uncertainty distributions) because technical uncertainty does not demand risk-

premium from diversified investors. So, revelation distributions are naturally risk-neutral. With the 

Theorem 1 properties, Dias (2002) combines revelation distributions with risk-neutral (or adjusted) 

stochastic process into a Monte Carlo framework in order to solve the following real option problem 

on oilfield development decision. An oil company has an undeveloped oilfield with still relevant 

remaining technical uncertainty about the oil reserve volume (B) and quality (q). In addition, we have 

market uncertainty on oil prices (P) and on development investment (D). There are many alternatives 

of investment in information (vertical appraisal well, horizontal appraisal well, long-term production 

test, pilot test, etc.) with different learning costs, different times to learn, and different learning 

intensities (given by the revelation distribution variances). For each alternative of investment in 

information, we can run a Monte Carlo simulation as illustrated in Figure 2. 

                                                 
17 If R*

X is a version of RX, then R*
X = RX almost surely (Williams, 1991, p.84). 



 
Figure 2 – Practical Use of Revelation Distributions in Dias (2002) 

In case of development option exercise, we get the net present value: NPV = V – D = q B P – D.  

Figure 2 shows the (normalized) development option threshold (red line) where is optimal the 

exercise of development option. It also shows two sample-paths generate by Monte Carlo simulation. 

Between t = 0 and t = “revelation time”, the normalized project value V/D oscillates due to both the 

oil price P and the investment D market uncertainties. At t = “revelation time”, we get new 

information about q and B, updating the expectations E[q] and E[B], so that the jump size in V/D is  

caused by jumps in these expectations, which are drawn from the revelation distributions p(Rq) and 

p(RB). After running many interactions in this Monte Carlo framework, we get the option value F. By 

subtracting the learning cost, we get the real option value for this oilfield using one specific learning 

alternative. We repeat the simulation (but with different time to learn, different revelation 

distributions, etc.) for the other learning alternatives. The alternative with the higher value from these 

simulations is the best learning option alternative. This apparent complex problem (compound 

options: learning and development options; 5 state variables: P, D, q, B and t) can be solved easily 

with a simple Excel spreadsheet plus a Monte Carlo simulation device in seconds or few minutes. 

In this problem, for each learning alternative k (that generates a signal Sk), Dias (2002) used the 

following flexible information structure that simplified the computational task: 



Ik   =  {η2(q | Sk), η2(B | Sk), A}                                                       (6) 

Where A is the assumption “the revelation distributions of q and B are approximately18 of the same 

type (shape) of the limit case of full revelation”, e.g., if the prior distribution of B is lognormal, we 

assume that the revelation distributions for B are also lognormal. This is totally true only for the full 

revelation limit, where the revelation distribution is equal to the prior distribution. With this 

information structure plus the prior distributions of q and B, we have all the input required for 

probabilistic modeling of learning options. Note that, in this problem, we don’t need the distribution 

of S nor the joint distribution p(x, s) to solve our real option problem. However, for the discrete 

Bernoulli revelation processes we’ll use other kind of information structure, specifying η2 and the 

distribution of S (replacing the assumption “A” in eq. 6). In all cases, the learning measure η2 is used 

because it defines the learning potential and it has nice/convenient properties, as we will see below. 

We study η2 now, starting with some definitions and the main properties. 

Definition. Learning measure η2: Consider two r.v. X and S with finite variances, defined in the 

same probability space (Ω, Σ, P ). The expected percentage of variance reduction of X given S is: 

2 Var[X]  E[ Var[ X | S ] ]η (X | S)    
Var[X]

−
=                                             (7) 

The notation η2 is adopted due to two reasons: (a) it eases the connection with the statistical 

interpretation of η2, namely the correlation ratio19, also known by “eta-squared” in some statistical 

books; and (b) in some situations (e.g.: Bernoulli processes) is more intuitive the positive root of η2, 

i.e., simply η, as we will see. By applying Theorem 1(c) we get: 

2 XVar[R ] Var[ E[ X | S] ]η (X | S)        
Var[X] Var[X]

= =                                       (8) 

That is, the proposed learning measure is the normalized revelation distribution variance, being 

normalized by the initial variance (i.e., the prior distribution variance). Because variance is a non-

negative number, eq. (8) shows that η2 is always positive or zero. Eq. (5) (or eqs. 7 and 8) shows that, 

in average, the posterior distribution variance never grows, i.e.,  

                                                 
18 With the exact mean and variance, the error caused for a non-exact shape is generally of second order. But this 
approximation is good for continuous distributions, but not for discrete distributions (we’ll use other structure). 
19 The famous statistician Karl Pearson introduced the correlation ratio in 1903. Kolmogorov, 1933, p.60, linked this 
concept with the conditional expectations concept. 



Var[RX] ≥ 0   ⇒   E[ Var[X | S ] ]  ≤  Var[X]                                       (9) 

This learning measure is asymmetric, i.e., η2(X | S) ≠ η2(S | X). This is an advantage of η2. The 

following example illustrates this paper claim that a good learning measure must be asymmetric for 

the general case. Again we use an example from information theory. The expected entropy (also 

known as conditional entropy of X given S or equivocation, see McEliece, 2002, p.20) is the average 

entropy of the posterior distributions p(x | s) from all possible outcomes of the signal S. For the 

discrete case the concept of expected entropy is defined as: 

H(X | S)  =  −     y)]|log[p(x   y)|p(x
x
∑  

In words, expected entropy measures the expected remaining uncertainty about X after S has been 

observed. The difference between the (unconditional) entropy H(X) and the expected entropy after 

the signal H(X | S) is a kind of expected reduction of uncertainty (here measured by entropy) with the 

information revealed by S. This amount is called mutual information, also known as information 

transmitted or uncertainty removed (Lawrence, 1999, p.62), and is defined for the discrete case by: 

I(X; S)  =  H(X) – H(X | S)                                                    (10) 

This is perhaps the most important concept from information theory. Note that eq. (10) resembles our 

Theorem 1(c) (eq. 5), but with entropy replacing variance. Let us see a classic numerical example20. 

Consider two r.v. A and B, with A assuming one value from the set {– 1, +1, − 2, + 2}, each scenario 

with probability ¼, whereas B = A2. Figure 3 shows this example. 

 
Figure 3 – Example of Asymmetric Learning 

                                                 
20 This example appeared in Feller (1968, p.236) to show the inadequacy of correlation coefficient to express dependence 
in the general case (nonlinear relations between r.v.). McEliece (2002, p.23-24; 45) uses the same example to show the 
superiority of mutual information over the correlation coefficient. This paper uses this same example, but to show the 
asymmetric measure η2 superiority over symmetric measures like mutual information!    



There is an obvious dependence between the r.v. A and B (there is a function linking them!), but the 

correlation coefficient is zero. McEliece (2002) pointed the superiority of the metric based in 

entropy, because the mutual information I(A, B) is different of zero: I(A, B) = 1 bit. However, this 

metric is symmetric, I(A, B) = I(B, A). For learning purposes, if we know the value of A, this 

information reveals all the truth about the value of B. Our metric shows that: η2(B | A) = 100 % (full 

revelation case). However, if we know the value of B (e.g. B = 4), we still don’t know the value of A 

(e.g., either A = + 2 or A = − 2, this uncertainty is even worse than the initial case for mean-variance 

optimizers in the classic finance). In this case is necessary to use some measure that considers this 

asymmetry. Our metric captures this learning asymmetry: η2(A | B) = 0 % ≠ η2(B | A) = 100 %.  

 

So, this example showed that we could be interested in asymmetric effects from the interaction of 

two r.v. But, for some statistical applications, like “distance of a joint distribution from the 

independence case”, a symmetric measure for the dependence of X and S looks natural, because 

distance is a symmetrical concept. But symmetry has nothing of “natural placing” in value of 

information applications. In particular we are interested in see how S reduce the variance of X or how 

valuable is S for X. It doesn’t matter the opposite, i.e., how the variable X reduces the variance of S. 

So, there is an asymmetric economic interest to evaluate only one direction for the relations between 

the r.v. X and S. A learning measure that captures this asymmetric interest must be asymmetric in 

general and symmetric only in particular cases. In this way, we can penalize many dependence 

measures as candidate to learning measures. One example is the increasing popular “copula” (see a 

good explanation at Nelsen, 1999), which is not adequate candidate for learning measure because is 

always symmetric and it is not directly applicable to discrete distributions.   

We’ll prove that η2 ∈ [0, 1]. This means that as measure η2 doesn’t concern with the learning 

direction, i.e., if either the dependence is positive or negative21. This is an advantage22 in our context 

because we are interested in learning, in improving our knowledge over X by using the information 

from the signal S. Remember Figure 1 example discussion, a negative signal but with the same 

intensity (same η2) just permutes CF2
+ and CF2

− with the portfolio value remaining the same (same 

learning effect). The example below also shows this point and permits an intuitive discussion of the 

                                                 
21 Metrics that allow negative values, like the correlation coefficient, are not measures. 
22 This is a disadvantage in some applications like finance portfolio theory: in order to reduce the portfolio variance is 
better  negative than positive correlations. So this positive/negative distinction is relevant in same applications. 



inadequacy, for learning purposes, of metric based in likelihood of information S about the variable 

X, i.e., a metric related with the inverse probability p(s | x). 

Example: Two experts who own “infallible crystal balls”, know all the truth about the next day 

performance of stock X (if will go up or down) in the stock exchange market. An investor want to 

buy the expert advise and prior this advice there are 50% chances for each scenario. The expert S1 is 

known because always says the truth. The expert S2 is known because always lies. Of course we gain 

the same knowledge by buying either S1 or S2 advises. The positive dependence between X and S1 

and the negative dependence between X and S2 provide the same knowledge. So, by the VOI point of 

view they are indistinguishable. By the point of view of reliability of the information, i.e., the 

likelihood of the information L(S), this metric assumes two different values for the same knowledge 

(full revelation of X), i.e., L(S1) = p(S1 = a | X = a) = 100% and L(S2) = p(S2 = a | X = a) = 0%,  a = 

up or down. In addition, L(S) metric set the value 0 for the full revelation case in this example! So, 

despite its wide use in VOI/economics of information literature, metrics based in likelihood don’t 

look adequate for learning purposes. In this example, it is easy to see that our proposed measure 

attributes the same value for signals that result in the same learning, i.e., η2(X | S1) = η2(X | S2) = 1, 

because the posterior variance (after either S1 or S2) goes to zero.  

In Dias (2002) example, we could find by simulation the VOI for different learning intensities, i.e, 

different η2 values. Figure 4 shows these simulations results (VOI is before the cost of learning 

subtraction), which shows a nonconcavity for low values of η2 and a rough linear behavior. 

 
Figure 4 – Value of Information x η2 in Dias (2002) 



The nonconcavity behavior for low learning intensities is consistent with a classic paper of Radner & 

Stiglitz (1984). Because it is much easier to work with perfect information (full revelation, η2 = 

100%) in VOI problems and for no learning (η2 = 0) the VOI is zero, in some practical cases the 

linear approximation VOI(η2) can be useful for fast calculation. Now, we set some key η2 properties. 

Proposition 1: Let X and S be two non-trivial r.v.23 with finite variances, defined in the same 

probability space (Ω, Σ, P ). Consider the learning measure η2(X | S) defined by eq. (7). Then, this 

measure has the following properties: 

(a) The measure η2(X | S) always exists; 

(b) The measure η2 is, in general, asymmetric, i.e.,  η2(X | S) ≠ η2(S | X) 

(c) The measure η2 is normalized in unit interval, that is24, 

0 ≤ η2 ≤ 1                                                                                   (11) 

(d) If X and S are independent r.v., then η2 is zero: 

X and S independent  ⇒  η2(X | S)  =  η2(S | X)  =  0                              (12) 

In addition, η2 is zero if and only if the revelation distribution variance is zero: 

η2(X | S)  =  0   ⇔   Var[RX(S)] = 0                                                (13) 

(e) η2(X | S) = 1 ⇔  exists a real function, the r.v. g(S), so that X = g(S);  

(f) The measure η2(X | S) é invariant under linear transformations of X, i.e., for any real numbers a 

and b, with a ≠ 0, we have: 

η2(a X + b | S)   =  η2(X | S)                                                                 (14) 

(g) The measure η2(X | S) is invariant under linear and nonlinear transformation of S if the 

transformation g(S) is a 1-1 function (invertible function).  

η2(X | g(S))  =  η2(X | S),        g(s) is invertible                                (15a) 

In general, for any g(S) measurable by the sigma-algebra generated by S, then the inequality below 

holds: 

                                                 
23 Non-trivial means strictly positive variances. Proposition 1 is valid almost surely (with probability 1). 
24 We could also highlight that η2 is a truly measure, because η2 ≥ 0. 



η2(X | g(S))  ≤  η2(X | S) , with equality if g(s) is invertible               (15b) 

(h) If the r.v. Z1, Z2, … are independent and identically distributed (iid) and if S = Z1 + Z2 + … + Zj 

and X = Z1 + Z2 + … + Zj + k for any non-negative integers j and k, with j + k > 0, the proposed 

measure η2(X | S) is given directly by: 

η2(X | S) = 
j

j + k
                                                                    (16) 

Proof: Appendix B.  

In order to motivate to the next theorem about the connection between independent signals and full 

revelation, let us first present a simple example. Consider an already discovered oilfield with 

uncertainty about the true volume of this reserve. Denote B the random variable number of barrels (or 

volume) of this reserve. There is one area (one reservoir) with B0 million barrels of proved reserves, 

and two independent reservoirs (different geologic ages) with reserves of B1 and B2 if these 

reservoirs are filled with petroleum, see Figure 5.  

 
Figure 5 – Oilfield with Two Reservoirs (B1 and B2) with Uncertainty 

But there is uncertainty if the reservoir is filled with water or with petroleum. The first reservoir has 

probability q of petroleum and (1 – q) of water, whereas the second reservoir has probabilities p and 

(1 – p) for petroleum and water, respectively. By drilling one appraisal well in each area with 

uncertainty we reveal all the truth about the variable B, that is, the reserve volume B is a solely 

function of two independent random variables S1 and S2:  

B(S1, S2)  =  B0 + (B1 x S1) + (B2 x S2)                                              (17) 

Where the signals are independent Bernoulli random variables, S1 ~ Be(q) and S2 ~ Be(p). For 

Bernoulli variables we’ll see that independence means (iff) that η2(S2 | S1) = η2(S1 | S2) = 0. Here we 

are interested in η2(B | S1) and η2(B | S2), i.e, the signals S1 and S2 relevancy to predict B.  



Let us work with numbers: B0 = 100; B1 = 50; B2 = 50; q = p = 50%. The expected value equation for 

B is: E[B] = B0 + (B1 x q) + (B2 x p) = 150. The unconditional (prior) variance is Var[B] = 1250. It is 

easy to calculate that the revelation of the signal S1 (by drilling the first well) reduces Var[B] by the 

half, i.e., η2(B | S1) = 50%. Similarly η2(B | S2) = 50%. The example most interesting feature is: 

η2(B | S1) + η2(B | S2)  =  η2[f(S1, S2) | S1] + η2[f(S1, S2) | S2]  =  1                  (18) 

It is not a coincidence nor because B is linear in S1 and S2. We’ll see that this relation is much more 

general, valid for any function and for n > 0 independent variables. This η2 property is not verified by 

the “competitors” coefficient of correlation (0.71 + 0.71 > 1)25 or mutual information (1 + 1 > 1)26. In 

addition, due to its scenario insensitivity, mutual information does not change if the volume B1 is the 

double of B2, when clearly the signal S1 becomes more valuable than the signal S2 in terms of 

reducing uncertainty about the volume B. If B1 = 100 (remaining B2 = 50, etc.), the η2 property (eq. 

18) remains valid but with higher weight to signal S1, i.e., η2(B | S1) + η2(B | S2)  =  0.8 + 0.2 = 1. 

The key concept used in the eq. (18) was independence. Following Breiman (1969, chapter 4), 

independence of random variables is a strong condition; independence is a family or hereditary 

property. It is illustrated by the following known results (e.g., Breiman, 1969), which will be next 

used in the full revelation theorem for independent signals.  

Lemma 2: Let the signals S1, S2, … , Sn, be independent random variables. Then:  

(a) Any smaller group of these variables is also independent;  

(b) For any functions f, g, … , h, the variables f(S1), g(S2), . . . , h(Sn), are independent; and  

(c) Functions of disjoint groups of these variables are independent (e.g., f(S1) and g(S2, S3) are 

independent).  

The full revelation theorem for independent signals is presented below. It can be used directly to 

know the participation of each variable in the full revelation process over the variable of interest X.  

Theorem 2 (Learning measure decomposition): Let the signals S1, S2, … , Sn, be independent 

random variables. We want to learn about X, a random variable with Var[X] > 0. Assume as finite all 

the relevant expectations and variances. Let X = f(S1) + g(S2) + . . . + h(Sn), where f, g, . . . , h, are 

any real valued functions. Then:    

                                                 
25 In this simple example, because the function B(S1, S2) is linear, we’ll see that the correlation-square ρ2 is equal to η2.  
26 Considering base 2 in the logarithms from entropy equation. Other base will not make things better in the general case. 



η2(X | S1) + η2(X | S2) + … + η2(X | Sn) = 1                                    (19) 

Proof: Appendix C. 

This kind of property can be useful also when the variable of interest is a function of a product and/or 

quotient of independent random variables, because we can make a logarithm transformation and 

apply the theorem. For example, in oil companies and in professional literature the reserve volume B 

is estimated considering B as a function of many independent variables. One function used is B(RF, 

GV, NTG, φ, Sw, Bo) = RF x [GV x  NTG x φ x (1 − Sw)] / Bo, where RF = recovery factor; GV = 

gross volume of rock; NTG = % net to gross thickness; φ = porosity; Sw = saturation of water; and 

Bo = oil volume formation factor. Another function is B(RF, A, h, φ, Sw, Bo) = RF x (A x h x φ x (1 

− Sw)] / Bo, where A = area; h = net pay (thickness with oil) and the remaining variables as before. 

With the log-transformed X = ln(B), we can write X as a sum of functions of independent random 

variables, and the theorem 2 holds for X. 

In the previous example (Figure 5) with S1 and S2 independent and B = f(S1) + g(S2), this theorem is 

verified: η2(B | S1) + η2(B | S2)  = 0.5 + 0.5 = 1. Now, in the same example imagine that the Bernoulli 

variables S1 and S2 are not independent. Even B being a solely function of S1 and S2, eq. (19) will not 

be valid with the dependence between S1 and S2. The intuition is that – in addition to reveal the 

existence of oil in its area (direct revelation on B), the signal S1 provides also relevant information 

about S2. So, we must expect that η2(B | S1) > 50%. The same reasoning is valid to S2, so that also 

η2(B | S2) > 50%. Hence, we shall expect that η2(B | S1) + η2(B | S2)  > 1. This shows that, although 

each individual signal has higher revelation power with the dependence hypothesis (signals are more 

valuable), when buying both signals S1 and S2 we are gathering “excess of information” because 

there is overlapping information set with the signals S1 and S2.  

Now is presented a set of axioms (desirable properties) for probabilistic learning measures. It is 

inspired in the famous axiom list of Rényi (1959) for probabilistic dependence measures. Here our 

focus is learning measures, whereas Rényi thought in applications like distance from independence.  

Axioms for Probabilistic Learning Measures: The following axiom list gives the desirable 

properties for a probabilistic learning measure denoted by M(X | S): 

A) M(X | S) shall exist at least for all non-trivial r.v. X and S and with finite uncertainty; 

B) M(X | S) shall be, in general, asymmetric; 



C) M(X | S) shall be normalized in the unit interval in order to ease the interpretation, i.e., 

0 ≤ M(X | S) ≤ 1                                                                        (20) 

D) If X and S are independent ⇒ M(X | S) = M(S | X) = 0, because there is no probabilistic 

learning. In addition,   

M(X | S) = 0  ⇒  zero learning                                                    (21) 

Where “zero learning” can occur not only for the case of independence. The learning concept is 

defined in the specific measure, but its sense must be invariable (eg., the measure of 

uncertainty shall be the same for all applications); 

E) In case of functional dependence, M(X | S) shall be maximum, i.e., for any real function 

f(.): 

X = f(S)  ⇒  M(X | S) = 1                                                     (22) 

In addition: 

M(X | S)  =  1  ⇒  maximum learning                                 (23) 

Where “maximum learning” means that is not possible to learn more about X, and learning 

concept is defined in the specific measure, but its sense must be invariable; 

F)  M(X | S) shall be invariant under linear transformations (changes of scale) of either X or 

S, i.e., for real constants a and b, a ≠ 0:  

M(a X + b | S)   =  M (X | S)                                             (24) 

M(X | S)   =  M (X | a S + b)                                             (25) 

G) M(X | S) shall be practical in the sense of easy interpretation (intuitive) and easy to 

quantify/estimate. 

H) M(X | S) shall be additive in the following sense: if the information S can be decomposed 

into a sum of independent factors S1 + S2 +… + Sn, so that the knowledge of all these 

factors provides maximum learning, then the summation of the individual learning 

measures shall be equal 100%, i.e.: 

 M(X | S1) +  M(X | S2) + … + M(X | Sn)  =  1                                 (26) 
 

Theorem 3 (Learning measure η2): The proposed learning measure η2 obeys the entire axiom list.  



Proof: Note that η2 uses the variance as measure of uncertainty. So, learning means that is expected 

the reduction of uncertainty measured by the variance. In this way, maximum learning means full 

reduction of variance (posterior variance equal to zero) and zero learning means zero reduction of 

variance. The Proposition 1 proves most of the listed axioms, in some cases in stronger way. Axioms 

A, B and C are proved by Proposition 1 (a), (b) and (c). Axiom D is proved by Proposition 1 (d) and 

by the fact that eq. (13) implies in E[Var[X | S]] = Var[X], so proving eq. (21) by the definition of 

“zero learning” for η2. Axiom E is proved by Proposition 1 (e) and by the definition of “maximum 

learning”, which implies that E[Var[X | S]] = 0, which implies that η2(X | S) = 1. Axiom F is proved 

by Proposition 1 (f) and (g), but with η2 holding for more general cases: g(S) can be any an invertible 

(or 1-1) function (not only linear functions). Axiom G is more subjective, but the measure η2 holds 

widely in the sense that it has an intuitive interpretation of reduction of uncertainty, in percentage 

terms, and can be showed (Dias, 2005) that η2 can be estimate with non-parametric27 or with 

parametric methods (when applicable), including popular parametric statistical methods like 

regressions (linear or nonlinear)28 and ANOVA. Axiom H is proved with Theorem 2, in a stronger 

(more general) version, because it is valid for any real function (not only linear functions).               

Theorem 3 shows the η2 strength as learning measure. Surprising this learning measure has not been 

used before in VOI literature, which uses in most cases measures based in likelihood function (that 

doesn’t obey most axioms). Now, we will see an application of this learning measure in order to build 

the Bernoulli revelation processes, which is useful in applications like oil/gas exploration and R&D.   

4 – Bernoulli Revelation Processes  

In order to evaluate the effect of a binary signal29 S over another binary r.v. X, we must study the 

dependence relation between two Bernoulli distributions, i.e., the joint distribution between X and S, 

the bivariate Bernoulli distribution.  

Bivariate Bernoulli distribution is defined with three parameters: the two parameters that define the 

marginal distributions (success probabilities p and q) and a third parameter that establishes the 

dependence between the Bernoulli marginal distributions. The later can be, e.g., the joint success 

                                                 
27 Note that η2 is non-parametric because it is related only with variances, not assume a specific type of distribution. 
28 If the correct regression, in the sense of minimization of the mean square error, is linear (e.g., X and S are normal r.v.), 
η2 is equal the squared-correlation coefficient ρ2; if a non-linear regression is correct, then η2 is R2, the regression fitting 
factor.  
29 Examples: a neighboring well can reveal success or failure (see example Figure 1); a 3D seismic record can indicate 
success (indicative of favorable oil reservoir structure) or failure; a R&D project phase can reveal success or failure, etc. 



probability p11 = Pr(X = 1 and S = 1). However, later we’ll replace p11 by η2. Table 1 presents the 

bivariate Bernoulli distribution as well the univariate marginal distributions. 

Table 1 – Bivariate Bernoulli Distribution and Marginal Distributions 

  Signal S (eg.: seismic) 
  S = 1 S = 0 

Marginal 
distribution of 

X (CF) 

X = 1 p11 p10 p Variable X 
(eg.: chance factor) X = 0 p01 p00 1 − p 

Marginal Distribution of S  q 1 − q  
 

Without loss of generality, we’ll set X = CF, the exploratory chance factor, but theory can be used for 

other applications (like R&D). By notational convenience for Bernoulli revelation processes, instead 

the success probability notation p will be used the notation CF0, i.e., p = CF0.   

The revelation distribution has two scenarios in this case, conveniently denoted by CF 
+ and CF 

−: 

CF 
+ =  Pr[CF = 1 | S = 1]  =  E[CF | S = 1]                                          (27) 

CF 
− =  Pr[CF = 1 | S = 0]  =  E[CF | S = 0]                                          (28)  

So, CF0 evolves to CF 
+ or CF 

−, depending on the signal S. These revelation distribution scenarios 

have occurrence probability of q and (1 – q), respectively. Elementary probability theory permits 

write the following equations for marginal and joint distributions (to be used in proofs): 

CF0  =  p  =  p11  +  p10                                                      (29) 

q  =  p11  +  p01                                                               (30) 

p11  +  p10  +  p01  +  p00  =  1                                             (31) 

Traditional probability theory defines conditional probability as P(A | B) = P(A ∩ B) / P(B). Hence: 

CF 
+ = 11p

q
                                                                          (32) 

CF 
− =  10 0 11p CF p  

1 q 1 q
−

=
− −

                                              (33) 

Where was used eq. (29) to set eq. (33). By combining eqs. (29) and (30) in eq. (31), we get the 

probability p00 in terms of more basic variables CF0, q and p11: 

p00  =  1 + p11  −  CF0  − q                                                    (34) 



It is easy to prove (or see Kocherlakota & Kocherlakota, 1992, p.57) that CF and S are independent 

Bernoulli r.v. if and only if its joint success probability Pr(CF ∩ S) = p11 is equal to the product of the 

marginal success probability: 

CF and S independent   ⇔   p11  =  CF0 q                               (35) 

The correlation coefficient ρ(CF, S) is obtained easily by calculating the covariance, normalizing, 

and using the previous equations (or see Kocherlakota & Kocherlakota, 1992, p.57): 

11 0

0 0

p CF  qρ(CF, S)  =  
CF  (1 CF ) q (1 q)

−

− −
                                        (36) 

The multivariate distribution literature shows that are necessary limits of consistence for these 

distributions, i.e., given the marginal distributions, it is not possible any dependence intensity 

because, e.g., eq. 31 must hold, etc. In particular, full revelation is not possible for any marginal 

distributions of CF and S. Any measure of dependence of distributions with given marginals must 

obey these limits, which are called Fréchet-Hoeffding bounds (see, e.g., Nelsen, 1999). For bivariate 

Bernoulli distributions, the Fréchet-Hoeffding limits for the double success probability and for the 

correlation coefficient are respectively (proof: Joe, 1997, p.210): 

Max{0, CF0 + q – 1} ≤  p11  ≤  Min{ CF0, q}                                (37) 

0 0

0 0

CF  q (1 CF ) (1 q)
Max  ,  

(1 CF ) (1 q) CF  q
 − − − − − −  

≤  ρ  ≤                                                              . 

≤ 0 0

0 0

Min{CF  , q} (1 Max{CF  , q})
Max{CF  , q} (1 Min{CF  , q})

−
−

      (38) 

Now we are ready to set the Theorem 4, using our proposed learning measure η2 to express 

dependence between the marginal distributions. In this theorem, we assume positive dependence that 

implies in CF− < CF0 < CF+. The case of negative dependence is symmetric: CF+ < CF0 < CF−, with 

changes in equations as indicated in the theorem. 

Theorem 4 (learning measure η2 and bivariate Bernoulli distribution): Let the (non-trivial) marginal 

distributions be CF ~ Be(CF0) and S ~ Be(q), linked in a bivariate Bernoulli distribution by the 

learning measure η2(CF | S) defined by eq. (7) or by eq.(8). Then: 

(a) The revealed success probabilities CF 
+ and CF 

−, in case of positive dependence, are: 



CF 
+ =  CF0  + 2

0 0
1 q  CF  (1 CF )  η (CF | S)

q
−

−                          (39) 

CF 
− =   CF0  − 2

0 0
q  CF  (1 CF )  η (CF | S)

1 q
−

−
                        (40) 

In case of negative dependence, eqs. (39) and (40) hold, but inverting the signal after CF0. 

(b) The learning measure η2 in this case is equal to the square of correlation coefficient ρ: 

2
2 2 11 0

0 0

(p CF  q)
η (CF | S)  =  ρ (CF, S)  =  

CF  (1 CF ) q (1 q)
−

− −
                       (41) 

(c) The learning measure η2 in this case is symmetric: 

X e S ~ Bernoulli   ⇒  η2(CF | S)  =  η2(S | CF)                               (42) 

(d) The learning measure η2 in this case is equal to zero if and only if CF and S are 

independent: 

η2(CF | S)  =  0  ⇔  CF and S independent                                      (43) 

(e) To assure the bivariate Bernoulli distribution existence, the Fréchet-Hoeffding bounds in 

terms of η2, being allowed learning with positive or negative dependence, are given by: 

0 ≤  η2(CF | S)  ≤ 

0 0

0 0

0 0

0 0

CF  q (1 CF ) (1 q)Max  ,  ,  
(1 CF ) (1 q) CF  q

Max
Min{CF  , q} (1 Max{CF  , q})

               , 
Max{CF  , q} (1 Min{CF  , q})

  − −
  − −  

 
− 

 − 

                (44) 

Proof: Dias (2005). Provided under request, it is based in algebraic manipulation of previous 

equations presented in this chapter and equations from Theorem 1, in most cases.  

The equations from theorem 4 solve important practical problems such as the example presented in 

Figure 1, a portfolio of dependent exploratory assets, and option games problems such as the case 

presented in Dias & Teixeira (2004): an oil exploration game with information spillover with 

cooperative Nash bargain with disagreement point being an equilibrium from a war of attrition game. 

Dias & Teixeira (2004) used different values for the case of bargain (private information is revealed) 

and for the war of attrition case (only public information can be revealed), with different values of η2 

in each game (bargain with higher η2). Another example was a real business valuation to enter in a 



long-term oil exploration in a new international basin, considering the information revelation effect 

cause by the activity of wildcat drilling. The information structure used in these problems is simply: 

I   =  {S, η2(CF | S)}                                                       (45) 

With this information structure plus the prior distribution (here defined by CF0), we solve all related 

problems. However, there is a way to simplify even more this class of problems, which is useful 

mainly for sequence of signals generating a Bernoulli revelation process. This simplification is the 

assumption that the chance factor CF and the signal S are exchangeable r.v. (see, e.g., O’Hagan, 

1994, p. 112-118, 156, 290). This class of symmetrically dependent r.v. has been assumed intuitively 

in many oil exploration models of dependent prospects (e.g., Wang et al., 2000). In the case of two 

Bernoulli r.v., exchangeability implies that the marginal success probabilities are the same, and many 

equations simplify, as indicated by Proposition 2 below. 

Proposition 2: Let CF and S be non-trivial Bernoulli exchangeable r.v., with the bivariate Bernoulli 

distribution defined by the success probabilities CF0 and q and by the learning measure η2. Then: 

(a) The marginal distributions are equal. The converse also holds, i.e.,  

 CF and S exchangeable   ⇔   CF0 = q                                             (46) 

(b) The full revelation (η2 = 1) is always possible for any non-trivial values of CF0 and q. That 

is, the Fréchet-Hoeffding bounds are not restrictions anymore: 

Fréchet-Hoeffding bounds:    0  ≤  η2  ≤  1                                             (47)   

(c) The revealed success probabilities CF 
+ and CF 

−, in case of positive dependence, are: 

CF 
+  =   CF0  +    (1 – CF0)  η                                       (48) 

CF 
−  =    CF0   −  CF0  η                                                (49) 

In case of negative dependence, eqs. (48) and (49) hold, but inverting the signal after CF0. 

Proof: Dias (2005). Provided under request. 

Lemma 3: Let CF and S be non-trivial Bernoulli r.v., with the bivariate Bernoulli distribution 

defined by the success probabilities CF0 and q and by the learning measure η2. The necessary 

condition for full revelation of CF is that CF and S be exchangeable r.v.:  

η2(CF | S) = 1   ⇒   CF and S exchangeable r.v.                      (50) 



Proof: Dias (2005). Provided under request.  

Note that in eqs. (48) and (49) are used the positive square root of the proposed learning measure, 

i.e., η. In this way, the revealed success probabilities CF 
+ and CF 

−are linear functions of η. By using 

these equations, it is easy to see that the difference of revealed success probabilities is simply η: 

CF 
+  −  CF 

−   =   η                                                   (51) 

Figure 6 below shows the revealed success probabilities CF 
+ and CF 

−, in case of positive dependence 

for many values of η. Note that the variation is linear and the chance factors difference is η. 

 
Figure 6 – Revealed Chance Factors x Square-Root of Expected % of Variance Reduction 

With these equations and concepts about bivariate Bernoulli distributions, we are ready to study 

Bernoulli revelation processes, starting with some definitions. 

Definition. Exploratory discovery process:  is a sequence of learning options exercises that results 

in a discovery. In general, these learning options have different learning costs, different time to learn, 

and different revelation powers (that can measured by η2).  In oil exploration this sequence can be 

magnetic search, gravimetric search, seismic record search, drilling of one or more wildcat wells. In 

R&D, this sequence can be the R&D phases.    

Definition. Exploratory revelation process:  is the probabilistic effect over the interest variable 

caused by the exploratory discovery process. This interest variable (X) can be a chance factor 

(success probability), oilfield in-place volume, fluids quality in an oilfield, etc. In R&D can be a 

chance factor, MTBF, operational efficiency of a new machine, etc. 



Definition. Bernoulli revelation process: is a sequence of revelation distributions generated by a 

sequence of bivariate Bernoulli distributions that represents the interaction between a sequence of 

signals S with the chance factor of interest CF.  

In particular, we focus the exchangeable revelation Bernoulli processes. In this way, given the prior 

distribution (i.e., CF0) and a sequence of ηk, k = 1, 2, …, we can construct all the revelation process 

because the success probabilities for the signals Sk are automatically defined with the exchangeable 

assumption. For example, in case of positive revelation with the first signal S1, the success 

probability for the second signal also rises to CF+ (to be exchangeable, see eq. 46). This simplifies 

the construction of revelation process because the sequence of information structures comprises only 

a sequence of ηk and the exchangeability assumption. We assume that the signal revelation power ηk 

is independent of the CF scenario (changes only with k), only the signal success probability changes 

with the scenario. Some figures below will make clear these points. 

Revelation Bernoulli processes can be non-recombining or recombining. Figures 7 and 8 show, 

respectively, non-recombining and recombining exchangeable revelation Bernoulli processes with 

two signals. Inside the rectangles are the current (revealed) chance factor success probabilities.  Each 

vertical set of rectangles is the set of scenarios from the revelation distribution after each signal.  

 
Figure 7 – Non-Recombining Exchangeable Revelation Bernoulli Process 



 
Figure 8 – Recombining Exchangeable Revelation Bernoulli Process 

Figures 7 and 8 show also the probability of occurrence for each scenario (in red, outside the 

rectangles), after the second signal. In order to recombine, given CF0, we must use a specific and 

decreasing sequence of ηk, as showed in Figure 8 (note that η2 = 28.6% < η1). We’ll return to this 

point. The recombining revelation process resembles the binomial lattice used in discrete-time option 

pricing. But here we have discrete-event process. Figure 9 shows this recombining process after 10 

signals, drawn in a format that resembles the binomial. 

 
Figure 9 - Recombining Exchangeable Revelation Bernoulli Process with 10 Signals 



The revelation process in Figure 9 was built with only two inputs (plus the assumptions of 

recombining and exchangeable process): the prior chance factor CF0 (= 0.3) and the first learning 

measure η1
2 (= 80%, that implies in η1 = 89.4%). It is easy to show that any subsequent ηk in this 

process is given by the simple equation, knowing only the first one (η1) in the sequence. This 

equation also shows that the ηk are decreasing in k in this exchangeable recombining process. 

1
k

1

ηη   
1 + (k 1) η

=
−

                                                             (52) 

We’ll see that exchangeable recombining Bernoulli revelation process, despite of the decreasing 

(average) posterior variance, never converges to the full revelation case because the specific 

decreasing schema for ηk (eq.52)30. Figure 9 used a very high initial value for ηk in order to highlight 

another point: Theorem 1(a) says that in the full revelation limit the revelation distribution converges 

to prior distribution. In this case, the prior distribution is a Bernoulli one, which has only two 

scenarios (1 with probability CF0 and 0 with probability 1 – CF0). By looking the “diffusion” 

revelation process from the last three figures, the number of revelation distribution scenarios rises 

without limit (k + 1 scenarios for the recombining case). Is it a paradox? No! Even without 

converging to full revelation, the high initial value for ηk in Figure 9 makes the revelation 

distribution after 10 signals close of the full revelation case and we can see in Figure 10 the 

histogram for the revelation distribution, which will solve this paradox in an intuitive way. 

 
Figure 10 – Histogram for Revelation Distribution After 10 Signals 

                                                 
30 But increasing (with k) or constant ηk sequences always converges to full revelation when k → ∞. It is easy to see this: 
after each signal Sk, the average CF variance is reduced by the factor (1 – ηk

2), and after infinite signals, the infinite 
product of these factors reduces the variance to zero if ηk is constant (e.g., 0.9100 ≅ 0) or if ηk increases with k. 



Note in Figure 10 that the middle scenario values have small probabilities and the extreme scenarios 

(near 0 or 1) has most of probability mass. This is not coincidence: as the number of signals increase, 

the probability mass migrates from middle to the extreme scenarios. In case of convergent revelation 

process, when k → ∞ all the probability mass in the middle scenarios go to zero and the scenarios 0 

and 1 receive all the probability mass. Note in Figure 10 that the scenario near the value 0 (0.003) has 

probability approaching to 1 – CF0 = 70%, whereas the scenario near 1 (0.992) has probability 

approaching to CF0 = 30%. 

We said that recombining exchangeable revelation Bernoulli processes don’t converges to full 

revelation. The revelation process presented at Figure 8 (CF0 = 0.6 and η1 = 0.4), after a large 

number of signals, has its mean posterior variance as % of prior variance showed at Figure 11. 

 
Figure 11 – Partial Convergence of a Recombining Revelation Process 

It is not by chance that this mean posterior variance converges to 0.6 (= 1 – η1) of the initial (prior) 

variance. Some algebraic manipulation shows the recombining exchangeable revelation Bernoulli 

processes converges only to partial revelation in which the mean posterior variance as % of prior 

variance is exactly 1 – η1. Equation 53 formalizes this partial convergence.  

2n
1

12n  k = 1 1

ηlim  1     1  η
[1 + (k 1) η ]→ ∞

 
− = − − 

∏                                     (53) 

Note that the term inside the parenthesis is the factor (1 – ηk
2), which reduces the average CF 

variance, combined with eq.(52). Although recombining exchangeable revelation Bernoulli processes 

never converges to full revelation (assuming non-trivial cases with η1 ≠ 1), the study of these 



processes is important because: (a) it is very simple; (b) the number of scenarios doesn’t “explode” as 

in the non-recombining processes (= 2k); and (c) can be more realistic in some practical cases. An 

example for the latter point is a petroleum basin: even after a very large number of wildcats drilled in 

a basin (e.g., shallow waters in Gulf of Mexico), the cumulative knowledge is not sufficient to say 

that one area has or not petroleum, although the chance factors are or very high or very low. 

The recursive equations to calculate the revealed CF scenarios in a (not necessarily exchangeable) 

Bernoulli revelation process is presented below, with the Figure 12 below, for the recombining cases, 

making clear the used notation. 

 
kCF+ −  =  k  1CF+

−   −  2k
k  1 k  1 k

k

q  CF  (1 CF )  η
1 q

+
+ +
− −+ −

−
                                 (54) 

 
kCF− +  =  k  1CF−

−   +  2k
k  1 k  1 k

k

1 q  CF  (1 CF )  η
q

−
− −
− −−

−
−                                  (55) 

 
Figure 12 – General Schema for Recombining CF Scenarios 

For the recombining cases, eqs. 54 and 55 provide the same value. For non-exchangeable processes, 

we have two variables to adjust the recombination: qk and ηk. With the Figure 12 is easy to see that 

the revelation distribution scenarios probabilities pi,k are obtained recursively with the following 

equation, being the scenario i – 1 the upper one and i the bottom one. Assume the value zero for the 

probability p when there is no scenario (in the extreme scenarios case).   

pi, k   =   pi – 1, k – 1 (1 – CFi – 1, k – 1)  +  pi, k – 1 CFi, k – 1                                 (56) 



An important point in a revelation processes is that, at least in petroleum applications, the event-

indexed scale (signals) is very different of time-indexed scale. By observing the event-diffusion 

process, such as the one displayed in Figure 9, in case of positive revelation, increases the chance of 

a rapid new exercise of the learning option (signal), because many prospects in the basin can become 

“deep-in-the-money” with this higher CF, a cascade effect. In case of negative revelation, the 

opposite occur: firms will postpone the wildcat drilling (exercise of learning options generating 

signals) in that basin. So, time run faster in the upper branches of Figure 9 than in the bottom 

branches of this event-driven diffusion process. This is an additional argument to classify technical 

uncertainty modeling with traditional Brownian models as “too rough” or inadequate. 

5 – Conclusion  

In this paper was presented a theory for technical uncertainty modeling with focus on real options 

and option games applications. This theory is based in the concept of conditional expectations. The 

distribution of conditional expectations is here named revelation distribution in order to highlight the 

property of always to reduce the process variance in average terms (process towards the truth about a 

variable of interest). The revelation distribution properties are useful in a Monte Carlo framework to 

solve complex real options problems with both technical and market uncertainties. The paper link the 

revelation distribution concept with a proposed learning measure η2, which has surprising adequate 

mathematical properties and an intuitive interpretation as expected variance reduction with the 

learning process. A list of axioms for learning measures is proposed and showed that some known 

measures used in VOI problems are not so adequate to model the learning power of a learning 

alternative. This learning measure is used to build the simplest revelation process, the Bernoulli 

revelation process, which is useful for real asset portfolio valuation in oil exploration problems, in 

option games applications and in R&D modeling. Some specific Bernoulli revelation processes were 

studied, such as the recombining process that has an interesting simplicity for applications. Many 

other revelation processes can be studied for specific applications and in order to enrich this theory 

on technical uncertainty and learning options exercises. This paper can be considered only a starting 

point to this goal. 



APPENDIXES 

A) Definition of Uniformly Integrable Sequence  

The r.v. sequence RX,1, RX,2, … RX,n is called uniformly integrable if, for all ε > 0, exists a M > 0 so 

that for all n = 1, 2, … : 

                                              (A1)  

Uniform integration is a necessary condition for a sequence of integrable r.v. {RX,n} to converge in 

L1, i.e., to converge in mean to a integrable r.v., which in our case is limn → ∞ E[|RX,n − X∞| ] = 0. The 

integral in the eq. (A1) is of Lebesgue-Stieltjes type, i.e., P is a probability measure or simply the 

cumulative probability distribution function P(RX,n). 

B) Proposition 1 Proof  

(a) This is a trivial property considering the assumption Var[X] > 0, but finite, and the assumption of 

finite Var[S].                                                                                                                                       

(b) The measure η2 is in general asymmetric if at least one example exhibits asymmetry. This 

example was presented in the text (see Figure 3).                                                                              

(c) The eqs. (7) and (8) show that: by (8) η2 is a quotient of variances and so it cannot be lower than 

zero due to variance definition. The eq. (7) shows that the maximum value is equal to 1, because η2 is 

maximized by minimizing E[Var[X | S]], which has a minimum value at Var[X | S] = 0 for all s ∈ S, 

i.e., for E[Var[X | S]] = 0 ⇒ η2(X | S) = 1.                                                                                         

(d) If X and S are independent r.v., then E[X | S] = E[X] and E[S | X] = E[S] (elementary 

independence property, see, e.g., Williams, 1991, p.88). In addition, the variance of any r.v. Y is 

defined by Var[Y] = E[ (Y – E[Y])2 ]. Hence, the revelation distribution variances from RX(S) and 

RS(X) are both equal to zero because: 

Var[RX(S)] = E[(E[X | S] – E[ E[X | S] ])2 ] = E[(E[X | S] – E[X])2 ] = 0 

 Var[RS(X)] = E[(E[S | X] – E[ E[S | X] ])2 ] = E[(E[S | X] – E[S])2 ] = 0 

Where were used the Theorem 1(b) and the mentioned elementary independence property. If the 

revelation distribution variances are equal to zero, the measures η2(X | S)  and  η2(S | X) are also 



equal to zero, because these learning measures are normalized revelation distribution variances. This 

proves eq. (12) and the return (⇐) in eq. (13). In order to prove the the direction ⇒ in eq. (13), note 

in eq. (8) that η2(X | S) = 0 ⇒ Var[RX(S)]  =  η2(X | S) Var[X] = 0 if Var[X] > 0.                           

(e) If η2(X | S) = 1, eq.(7) ⇒ E[Var[X | S]] = 0 ⇒ E[(X – E[X | S])2] = 0 and so, with probability 1 ⇒ 

X = E[X | S] ⇒ X is measurable by sigma-algebra of S, and hence we can write X = g(S).  

In Hall (1970, p.342), is used the axiom that, if a dependence measure is equal to 1 ⇒ X = g(S), but 

without the return (⇐). In Hall, the return X = g(S) ⇒ dependence measure equal to 1, is not 

considered necessary. In these more theoretical studies, Hall wished to study cases with infinite 

variance of X (without interest here). By assuming that Var[X] is finite, then holds the return for the 

measure η2 . The proof for the return (⇐) is even simpler: if S is revealed, then by function 

definition, X = f(S) is unically determined. So, E[Var[X | S]] = 0 and hence η2(X | S)  = 1 by eq. (7). 

According Hall (1970, p.342), in case of infinite variance of X, when the knowledge of S reduces the 

variance from infinite to a finite value, this can be considered a complete state of dependence, in an 

analogous way of the case of finite X variance, in that S reduces the X variance from a finite value to 

the zero value. In applications of this paper in that Var[X] is always finite, writing the stronger 

property version (⇔) is more convenient.                                                                                           

(f) The proof is simple. Applying eq. (7) for the variable Y = aX + b: 

η2(a X + b | S) = 
Var[a X + b]  E[Var[a X + b | S]

Var[a X + b]
−

 ⇒   

η2(a X + b | S) = 
2 2

2
a  Var[X]  a  E[Var[X | S]]

a  Var[X]
−

   

Because a ≠ 0, we can simplify (by cutting a2) to get η2(X | S) .                                                        

(g) The equality case if the function Y = g(S) is 1-1 is because the inverse S = g−1(Y) exists, i.e., g−1 

is a function that, by definition determines uniquely S if we know Y = g(S). So, knowing g(S) is 

equivalent to know S.  

If g(S) was not 1-1, the knowledge of g(S) would be lower than the knowledge of S, e.g., if Y = S2 

then the value Y = 1 could be either due to S = 1 as S = − 1. Then, the intuition said that η2(X | g(S)) 

shall be lower than η2(X | S). Formally, Rényi (1970, p.278-279) shows that η2(X | S) is the supreme 

of ρ2(X, f(S)) for any real function f(S). This implies that η2(X | S) ≥ ρ2(X, f(S)) for any real function 

f(S). If this function is any, this includes the function f(S) = E[X | g(S)]. So: 



η2(X | S) ≥ ρ2(X, E[X | g(S)]) 

 Rényi also shows that η2(X | Y) = ρ2(X, E[X | Y]). By making Y = g(S) we get η2(X | g(S)) = ρ2(X, 

E[X | g(S)]). By substituting in the previous inequality, we get: η2(X | S) ≥ η2(X, g(S))                     

(h) This property was suggested by Hall (1970) as one dependence axiom in order to related with the 

correlation coefficient. This was proved in Dias (2005), which is provided under request.   

 C) Theorem 2 Proof   

Recall the definition of  η2(X | Si) = Var[E(X | Si) ] / Var[X]. So, the left side of (19) is: 

 η2(X | S1) + η2(X | S2) + … + η2(X | Sn) =   

= 
Var[X]

)]S |  E(XVar[   . . .   
Var[X]

)]S |  E(XVar[    
Var[X]

)]S |  E(XVar[ n21 +++  =  

= 
)]h(S  ...  )g(S  )Var[f(S

}]S |  )h(S  ...  )g(S  ) E{f(SVar[  . . .   }]S |  )h(S  ...  )g(S  ) E{f(SVar[

n21

nn211n21

+++
++++++++  = 

But E{f(Si) | Si} = f(Si). Due to independence between Si and Sj, we have E{f(Si) | Sj} = E{f(Si)} and 

Var[f(Si) + g(Sj)] = Var[f(Si)] + Var[g(Sj)]. Hence: 

=
)]Var[h(S  ...  )]Var[g(S  )]Var[f(S

)}] E{k(S ...  )} E{g(S )} E{f(S )h(S Var[  . . .   )}] E{h(S ...  )} E{g(S )f(S Var[

n21

1 - n21nn21

+++
+++++++++ =  

However, the unconditional E{f(Si)} is not a random variable. It is a number known at the initial 

moment, so that Var[E{f(Si)}] = 0. Hence, many terms from the above equation vanish: 

 η2(X | S1) + … + η2(X | Sn)    =   
)]Var[h(S  ...  )]Var[g(S  )]Var[f(S
)]h(S Var[   ...  )]g(S Var[  )]f(S Var[

n21

n21

+++
+++  = 1                           � 
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