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1) Introduction  
In this webpage I put many important results that a real options modeler needs to know about first 
hitting time and expected discount factor for both arithmetic and geometric Brownian motions. These 
results are dispersed in the literature, so that I think this selection of results can be useful for advanced 
readers interested in real options, option games, and even in financial engineering in general. 

The expected first hitting time E[T*] is the expected first time for a stochastic variable to reach or cross 
a certain value.  
Example: suppose the current oil price is 18 US$/bbl and suppose an arbitrary superior price level of 
US$ 25/bbl, which one option is exercised. After the option exercise, the sample-path continuation is not 
useful anymore (it is absorbed) because the investment decision is irreversible - so, this level is an 
absorbing barrier. Other types of barrier are the reflecting barrier and the more general elastic barrier, 
not analyzed here.  
See in the figure below two possible oil prices sample-paths and an absorbing barrier of $25/bbl. 

Página 1 de 25First Hitting Time and Expected Discount Factor

3/13/2003file://C:\PAGE_WWW\MARCO\hittingt.html



 

In the chart above, the sample-path "i" reached the aborbing barrier at T*i = 1.2 years, whereas the 
sample-path "j" didn't reach the barrier level, oscillating below this level during the period of 4 years. 
This kind of chart can be reproduced by using the spreadsheet simula-hit_time.xls  

In this webpage we want to answer questions like:  
If the oil prices follow a geometric Brownian motion, what is the expected time for the oil prices to 
reach the US$ 25/bbl level? The answer is the mentioned expected first hitting time for a variable (oil 
price) that follows a Brownian motion. Of course the concept is also valid for others stochastic 
processes.  

Formal Definition for the First Hitting Time 

The mathematical definition for the first hitting time T*(V = b) = T*b for the stochastic process of a 
value V to reach (or cross) the barrier b, assuming that the process starts with V(t = 0) < b, is given by 
the equation:  

 

 
With the standard convention that the infimum of the empty set is infinite.  

The barrier b can be the threshold for the optimal investment. In case of perpetual options, the optimal 
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threshold is a single number (doesn't change along the time), that is, the barrier is fixed constant.  
However, the more general case for options with finite expiration, which has special practical interest, 
the threshold for the optimal exercise is a free-boundary: a term structure of threshold values b(t). We 
will see later how to estimate E[T*] in both cases.  

Recall that the drift (growth rate) is irrelevant to price options when the underlying asset follows a 
geometric Brownian motion, so that we don't need to especify the drift to find the option value (recall 
Black & Scholes & Merton model). However, the same is not true for the case of the expected first 
hitting time calculus. Some options properties like the first hitting time do depend of the drift (the 
expected growth rate) of the underlying stochastic variable. 

In the previous chart with two sample-paths, recall that the path "j" (the blue one) didn't reach the barrier 
level during 4 years.  
The natural question: Is possible that some path never reach the barrier level? In other words, is possible 
that for one or more sample-paths the time T* = infinite? The answer is: it depends on the drift. If the 
drift is sufficiently sloped towards the barrier, with probability 1 the sample-paths reach the barrier in a 
finite time (even being a very long time). However, if the drift is not sufficiently sloped, the problem of 
sample paths with T* = infinite can happen and the expected first hitting time become a useless concept 
in this case for practical applications.  

The infinite T*, if it happens, is a drawback when using the concept of expected first hitting time. 
However, it is not a drawback for the next concept: the expected discount factor.  

Expected Discount Factor 

In the option-games applications, is frequently used the expected discount factor, in order to calculate 
the expected present value of one option that will be exercise at a random time T*.  
Imagine that we are interested in this expected discount factor for a stochastic variable X < X* to reach 
the threshold level X* (when a real option will be exercised). This expected discount factor has a nice 
closed-form equation:  

 

Note that even if we have many sample-paths with T* = infinite, the exponential values are zeros so that 
the expectation above there exists (is finite) even with expected first hitting time going to infinite. 

In the above equation the parameter "beta1" is the positive root of the quadractic equation from 
(homogeneous part) option value differential equation (see Dixit & Pindyck, pp.142-144 and p.180). 
This parameter is function of the stochastic process parameters and the discount rate. We will see that 
for "real probability" applications, we use the real drift α and the risk-adjusted discount rate ρ, whereas 
for "risk-neutral probabilities" applications we replace α by the risk-neutral drift r − δ and the risk-
adjusted discount rate ρ by the risk-free discount rate r. See the next topic for a discussion on drifts and 
discount rates, and see Appendix C for details about the parameter "beta1". 

So, if we know the threshold level X* and the option exercise payoff (at X*), we can find out the 
(perpetual) option value simply by multiplying the exercise payoff by the expected discount factor 
above.  
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For a proof of these kind of expectation of a discount factor with random hitting time, click here and 
see the Appendix B. 

Unfortunately, we cannot calculate E[T*] directly from the above closed-form equation. That is: 

 

A frequent mistake is to put the equal signal in the above equation. The time T* is a random variable 
and in the discount factor equation the random variable T* is inside an exponential function, a convex 
function. By Jensen's inequality, we cannot calculate E[T*] directly from the above equation.  
In reality, due the convexity and by the Jensen's inequality we can even write: 

 

This webpage currently consider the expected first hitting time and expected discount factor only for 
arithmetic (or ordinary) and geometric Brownian motions. In the future, I intend to extend these 
concepts to other stochastic processes like mean-reversion and Poisson/jump processes. 

The remaining of this webpage is divided as follows. In the next section I discuss the hitting times 
applications of real versus risk-neutral drifts associated with risk-adjusted and risk-free discount rates, 
respectively, solving the real options problem using the contingent claims approach. In the third section 
- the largest one, the formulas for probability density, probability of an eventual absorption, expected 
first hitting time, and other equations are presented, with discussion and examples for both Arithmetic 
Brownian Motion and Geometric Brownian Motion, considering a fixed barrier (as in perpetual real 
options applications). In the fourth section, is showed the case of expected first hitting time for a 
variable barrier, used in the Excel applicative "Timing". The webpage concludes with the appendixes, 
including bibliographical references for both the mathematics of first hitting time and real options 
applications; the proof for the equation of the expected discount rate factor; and an additional discussion 
about the contingent claims x dynamic programming showing the fundamental quadractic equation for 
each case.  

 
 

 
 
2) Drifts and Discount Rates: Real and Risk-Neutral Applications
The two main applications of the concepts described above are capital planning and valuation of real 
options and option-games. 

In capital planning, projects portfolio managers want to answer the questions:  
Assume that a project is not deep-in-the-money with the current market conditions (that is, V < V*). 
* When is expected this project to become deep-in-the-money?  
* What is the probability of option exercise (investment in the project)? 
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In real options valuation, contingent claims approach (assume complete markets), we substitute the real 
drift α by the (unique) risk-neutral drift r − δ, which is equivalent to subtract a risk-premium π (> 0) 
from the real drift α. That is, risk-neutral drift = α − π = r − δ.  
The figure below illustrates these drifts by showing a real drift and its correspondent (for the same 
stochastic chocks) risk-neutral drift: 

 

In the above figure, the distance between the sample paths grows at a rate equal to the risk-premium π. 

For capital planning problems, is necessary to use the real drift α. The use of risk-neutral drift is a very 
commom mistake, giving wrong indicators for capital budgeting requirements along the next years 
(underestimating the required capital) because both the expected first hitting time is overestimated and 
the probability of option exercise is underestimated.  
In risk-management applications such as VaR (Value-at-Risk), is also necessary to work with real drift, 
not the risk-neutral one.  

For options evaluation using risk-neutral drift, the correct discount rate is the risk-free interest rate r. So, 
for real options valuation, the standard approach is risk-neutral drift + risk-free discount rate.  
A less standard approach for real options is by using the dynamic-programming approach (e.g., Dixit & 
Pindyck) for incomplete markets (martingale measure is not unique and so the RN drift). In this case, 
even for options valuation, are used the real drift and an exogenous "risk-adjusted" discount rate. For 
details, see the FAQ Number 4 and the FAQ Number 5.  

We are here interested in how to evaluate options using the concept of expected first hitting time and 
specially the related concept of expected discount factor. Let us see the application of this concept as 
one alternative to traditional real options optimization under uncertainty problem. 
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Another View of the Same Optimization Problem 

The development below is another way to solve the same optimal investment problem by finding out the 
expected discount factor from the hitting time T* at the optimal investment threshold V*.  

From the expected first hitting time point of view, the general optimal investment decision problem is 
modeled as follow:  
The firm will wait until the first time T* at which the project value V has reached the optimal level (the 
threshold) V*, and the firm will then invest.  
T* is random variable and depends of the initial level V(t = 0), of the drift, and of the threshold V*.  

For the contingent claims approach, the firm will maximize E [ e− r t] . ( V − I), by choosing optimally 
V = V* in order to exercise the option to invest. The optimal exercise of the option occurrs at t = T*, 
where T* is the first hitting time of V(t) at the threshold level V*, and I is the investment cost. For 
contingent claims approach, we use the risk-free interest rate as discount rate, but in this case is 
necessary to use the risk-neutral drift r − δ for the stochastic process of V(t).  
This approach gets the same value obtained for perpetual American call options (e.g., see Dixit & 
Pindyck, chapter 5).  

For the dynamic programming approach, similarly the firm will maximize E [ e− ρ t] . ( V − I) by 
choosing optimally V = V* (at t = T*) in order to exercise the option to invest. This case is like the 
presented in the last paragraph, but for the dynamic programming approach we use ρ as an exogenous 
(risk-adjusted) discount rate and the real drift α.  

For sample paths which the hitting time T* is infinite, the discount factor is finite: e− ρ T* = 0. So, in 
many situations the expected discount factor is more useful than the expected first hitting time, because 
the former can exists (be a finite number) even without existing a finite number for the expected first 
hitting time (if we have some paths with T* = infinite).  
In addition, for the GBM, if the drift is higher than 0.5 σ2, can be demonstrated that T* is always less 
than infinite (considering the current V lower than V*), see the end of the next topic.  

Let us show how to calculate both threshold and option value for the contingent claims approach. The 
maximation of the project is a trade-off between waiting for a higher value of the project V and the 
discount factor (higher as earlier we exercise the option). If we wait for a too high value of V, we can 
wait too long time and the discount factor can be too small. So, in this cost-benefit balance of waiting 
policy, there is one optimal value for V that maximizes the expected payoff from the option exercise , 
namely the function F (note that F is the real option value!) below: 

 

Subject to V following a risk-neutral geometric Brownian motion and without constrain in terms of 
option expiration (the option is perpetual). Let us call the expected discount factor of D(V0, V), where 
V0 is the initial value of the stochastic variable V0 = V(t = 0). 
So, our function F becomes:  

F = Max D(V0, V) . ( V − I)
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The first order condition to maximize the above equation determines that we take the partial derivative 
of F in relation to the stochastic control variable V, and equaling to zero. We obtain: 

D(V0, V*) + DV*(V0, V*) . V* = DV*(V0, V*) . I
 

Where DV*(V0, V*) is the partial derivative of D in relation to V (or V* at the optimum V = V*). This 
derivative is easily calculated because we know that (see the Introduction and the proof in the Appendix 
B): 

 

Hence, the derivative DV*(V0, V*) is:
 

 

Now, simply substitute D(V0, V*) and DV*(V0, V*) in the equation that we found with the first order 
condition and after a few algebra steps: 

 

This is a well known equation: the threshold is the "wedge" (> 1) times the investment. 
Now, we can find easily the real option value F by substituing the threshold in the equation F = E [ e− r 
t] . ( V* − I). That is: 

 

In a more general setting, the investment cost could also be stochastic: in this case, due to the first 
degree homogeneity of the option value in relation to V and I and zero degree homogeneity for the 
threshold (e.g., see McDonald & Siegel, 1985), we can work with the ratio p = V/I, and so the threshold 
will be a ratio p* = (V/I)*, and with a compound "total volatility". This threshold ratio p* and the 
normalized real option value f = F / I, can be found with the same approach. 
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3) Hitting Time Formulas for Fixed Barrier (Perpetual Options) 
In this section is examined the case of hitting time to a constant barrier. This case occurrs tipically for 
perpetual real options, which the threshold for optimal investment is a constant value (independent of 
time). However, another important case is the possibility of one asset to drop until the value zero, as in 
bankruptcy.  
Next, is presented the case of an absorbing barrier at zero for Arithmetic Brownian Motion. After that, 
the extension to the non-zero barrier case, and finally the extension for the Geometric Brownian Motion.

Arithmetic Brownian Motion 

The Arithmetic Brownian Motion, with drift α, starting at V0 in t0, is given by: 
 

dV = α dt + σ dz 

We are interested in the first hitting time that the stochastic variable V(t) reaches (or crosses) one fixed 
barrier b. Let us see the case of barrier at zero. 

Hitting Time Probability Densities for Arithmetic Brownian Motion  

A problem of practical importance is the possibility of an asset (security, firm value, project value, etc.) 
value dropping to zero where remains forever (zero as absorbing barrier). One approach to model this 
issue is by using a Poisson process with a discrete jump down to zero ("sudden death").  
However, for the case of a continuous stochastic process, e.g., following a Brownian motion, we need to 
use the concepts of first hitting time and absorbing barrier.  
Formally, at absorbing barrier V = 0 the stochastic process for V is over, meaning that V remains at 0 
forever.  

The solution for these kind of problems, where we need to know the probability distribution and/or 
probability moments (like mean and variance), generally is solved using the Kolmogorov equations. The 
Kolmogorov forward equation, also called Fokker-Planck equation, given the initial conditions, the 
current state V0 and the current time t0, we obtain the transition probability to future state V1 and t1, by 
working with derivatives of the future state. 
The Kolmogorov backward equation, which is very similar to the Black-Scholes equation, works with 
derivatives of the current state V0 and t0. 
In this section, I don't develop these equations: I put directly the results. However, interested readers can 
consult the following books: Dixit & Pindyck (1994, appendix chapter 3); Dixit ("The Art of Smooth 
Pasting", 1993); Ingersoll (1987, "Theory of Financial Decision Making"); or Willmott ("Paul Wilmott 
on Quantitative Finance", 2000, vol. 1, chapter 10).  

Following Ingersoll's textbook (1987, pp.353-354) but with our notation, the first hitting time 
probability density function g(t; V0, t0) to reach the absorbing barrier V = 0 (conditional to V starting at 
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higher value) is given by:  

  

Where n(.) is the standard normal probability density.  
Using the known equation for n(.) and setting t0 = 0, the density g(t; V0) equation can be written:  

  

The probability density chart for the first hitting time that V, starting from V0, reaches the 
absorbing barrier V = 0, is illustrated below for two volatilities cases:  

 

The chart above shows that higher volatilities means early hitting time (or higher probability density for 
smaller passage times). This is very intuitive.  

What if the barrier b is placed above the current level, that is, b > V0 ? 
 

The probability density is given by Karlim & Taylor (A First Course in Stochastic Processes, 2nd 
edition, p.363) or by Cox & Miller (The Theory of Stochastic Processes, p.221, eq.74, for the case of V0 
= 0):  
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Compared with previous equations, there is a translation with V0 being replaced by b - V0, the 
(modulus) of the distance up to the barrier (recall that probability density function never is negative). 
There is also an adjustment in the drift signal because in this case the drift has an opposite effect, when 
compared with the case of a barrier placed below the current level (at zero, in the previous equations). 
For the driftless case, α = 0, in the above density equation, T has no finite moments (Cox & Miller, 
p.221). We will discuss later the first moment case (expected first hitting time).  

The (cumulative) probability distribution of hitting times for the above case is given by the equation 
below. This equation is 1 less the probability of not hitting given by Harrison (Brownian Motion and 
Stochastic Flow Systems, p.14, eq.11): 

 

Where N(.) is the standard Normal (cumulative) probability distribution.  
The reader can check that this distribution increases with both the drift and the volatility. 
The equations above are for the arithmetic Brownian motion. Later, we will see that, by using these 
expressions, is very easy to derive the equivalent expressions for geometric Brownian motion, with a 
logarithm transformation and with change in the drift. Anyway, both the probability density and the 
cumulative probability distribution for the geometric Brownian case are showed in the Excel spreadsheet
placed at this webpage. 

Probability to Occur an Eventual Absorption for Arithmetic Brownian Motion 

The probability to occur an eventual absorption at the absorbing barrier placed at V = 0, is:  
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So, if the drift is negative or zero, almost surely (with probability 1) the process will reach zero in a 
finite time.  
This probability is important for the classical gambler's ruin problem. It shows that even for a fair game
(drift = 0), almost surely one day he/she will lose all the money, if he/she never stops. This probability is 
also important for financial applications such as the credit risk (default probability) and problems of 
economic survival in general. 

For positive drift, the probability of V to hit the zero level is increasing with volatility and decreasing 
with the initial level V0 and with the drift.  
In others words, for positive drift there is a probability ( 1 − π ) of the zero level never to be reached (or 
hitting time equal infinite with probability [1 − π] for positive drift).  
However, the probability of some day the stochastic process reach/cross the zero value can be very 
small. Examples:  
(a) for V0 = 10; α = 2% p.a.; and σ = 20% p.a., we get π = 0.0045% (~zero);  

(b) in the same case but with α = 0.5 %p.a.; the probability increase to π = 8.21%;  
(c) if V0 = ln(10) = 2.3026; α = 2% p.a.; and σ = 20% p.a., we get π = 10%.  

What is the probability of an eventual absorption if instead zero the barrier is placed at positive level, 
but below the current value V0. The probability of an eventual absorption if the barrier "a" is so that 0 < 
a < V0 is given by the equation 6.5 from the Dixit's book "The Art of Smooth Pasting", which is just the 
previous equation with a translation, that is, replacing V0 by the (modulus) of the distance V0 - a in the 
previous equation. 
So, the probability of an eventual absorption for a positive barrier a < V0 is:  

  

What if the barrier is placed above the current level V0? The expression below, the probability of an 
eventual absorption for a barrier b > V0, can be found in Cox & Miller (p.212, eq.39):  

  

Now imagine two barriers, a lower barrier "a" and a upper barrier "b". What is the probability that the 
first barrier hit is "a", not "b"? The answer is given by the same Dixit's book (equation 6.4):
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Where the second line (for driftless processes) is obtained with the limit when the drift tends to zero 
from the first line equation. Similarly, the probability that the first barrier hit is "a", not "b" is simply 1 − 
π  
Hence, there is zero probability that this process evolves between the two barrier without ever hitting 
either (see Dixit, p.54), even for driftless processes.  

The equations above are valid for arithmetic Brownian motion. The extension to geometric Brownian 
motion is straightforward by using a logarithm transformation that we will see soon. Before it, let us see 
the expected first hitting time for the arithmetic Brownian motion. 

 
Expected First Hitting Time for Arithmetic Brownian Motion 

For this problem (arithmetic Brownian, only one absorbing barrier at zero), Ingersoll's textbook (Theory 
of Financial Decision Making, 1987, p.354, eq.41) presents the expected first hitting time equation:  

  

Ingersoll points out two alternative demonstrations for these equations. The first one is by taking the 
distribution of the V stochastic process (eq. 31, p.352 in his textbook, derived from Kolmogorov 
differential equation) and relating with the distribution of hitting time (eq.33, p.353 in his textbook). The 
second way is by using the Kolmogorov backward differential equation directly for the hitting time 
distribution (and density) with appropriate boundary conditions. In this case is used the Laplace 
transformation of g. 
Although the above equation is a classical result, it is something surprising the independence of the 
volatility in the expected first hitting time above. However, we will see that for the geometric Brownian 
motion, the expected first hitting time will depend on volatility. 
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Even with negative drift, the expected hitting time can be very long if the current value is sufficiently far 
from the zero level barrier. For example:  
(a) V0 = 10 and α = − 2% p.a., we get E[T*(V = 0)] = 500 years; and  

(b) V0 = ln(10) = 2.3026 and α = − 2% p.a., we get E[T*(V = 0)] = 115 years.  

Lets expand the Ingersoll's hitting time formula presented above, for the case of a lower but nonzero 
absorbing barrier a, where 0 < a < V0.  
This case is important in real options applications, for example to know the expected exit time for a firm 
facing a declining demand for a quasi-obsolete product (e.g.: product with life cycle, as in computer 
industry), where "a" is the abandon threshold.  
The difference from the E[T*(V = 0)] equation is very small: if instead E[T*(V = 0)] we want E[T*(V = 
a)], it is only a translation. So, just replace V0 for (V0 − a) (see Dixit's The Art of Smooth Pasting, p.56, 
eq.6.10).  
Hence, for the barrier a < V0, the first hitting time for arithmetic Brownian motion is: 

  

 
An equivalent expression is presented in Dixit's book (The Art of Smooth Pasting, p.56, eq.6.10).  
Ross (Stochastic Processes, 2nd edition, p.364) after showing the infinite expectation for the driftless 
case, wrote about the first hitting time T*: "though finite with probability 1, has an infinite expectation. 
That is, with probability 1, the Brownian motion process will eventually hit a, but its mean time is 
infinite". 
Prof. Dixit give us an explanation about E[T*] = infinite for driftless process (α = 0): 
"...the probability of an eventual hit is unity. But very long excursions away from the barrier can occurr. 
Then the probabilities do not fall sufficiently fast for successively longer hitting times, and the 
expectation, which is the sum of the products of the times and their probabilities, divergers."  
In the same book Prof. Dixit teaches at p.55: "... some events may have infinite expected time, either 
because there is a positive probability that they never happen, or because probabilities of very long 
delays decrease too slowly."  

For applications of investment option exercise, in general the barrier (threshold) is placed above the 
current level V0. The changes in the above equation are few and ease to understand. So, for the barrier b 
> V0, the first hitting time for arithmetic Brownian motion is:  

Página 13 de 25First Hitting Time and Expected Discount Factor

3/13/2003file://C:\PAGE_WWW\MARCO\hittingt.html



  

If the drift is positive, the variance of the first hitting time is also finite. The variance depends on the 
volatility and for the above case, b > V0, the variance is given by: 

  

This result can be found in Cox & Miller (p.222, eq.76 for V0 = 0) . More general closed-form results on 
expected first hitting time and variance of hitting times for arithmetic Brownian motion can be found in 
Dominé, M. (1995): "Moments of the First Passage Time of a Wiener Process with Drift Between Two 
Elastic Barriers", Journal of Applied Probability, Vol.32, 1995, pp.1007-1013 (however, there is a typo 
in the variance equation, p.1013).  

Expected First Hitting Time for Geometric Brownian Motion 

Somebody can ask about the utility of arithmetic rather geometric Brownian process for real options 
applications. The point is that sometimes is useful to see the Geometric Brownian motion as an 
Arithmetic Brownian for the logarithm of the project value.  
Following Dixit's textbook The Art of Smooth Pasting (p.7):  
if dV/V = α dt + σ dz, letting v = ln(V), and using Itô's Lemma we find that v follows the arithmetic (or 
ordinary) Brownian motion:  
dv = d(lnV) = (α − ½ σ2) dt + σ dz  
so,  
dv = α' dt + σ dz  

Although the volatility term is the same, as highlighted by Dixit, d(lnV) is different of dV/V - in 
reality, by the Jensen's inequality, d(lnV) < dV/V.  
There is a frequent confusion between d(lnV) and dV/V (people saying that is the same thing). 
Sometimes this confusion has no practical importance because the drift value doesn't matter for several 
applications (the case of many options calculations, like the Black & Scholes famous equation), but this 
is not the case here. As discussed before, for the hitting time calculations, the drift α matters, and there 
is a difference of ½ σ2 dt between these processes.  

Given this alert, due its simplicity can be interesting to work with logarithm diffusion equation, so using 
arithmetic Brownian motion, easing the calculus in Kolmogorov equations (calculus of probabilistic 
moments) or easing Monte Carlo simulations.  

With the insights above and given that we have the results for the arithmetic Brownian case, we can 
easily find out the expected first hitting time equation for the Geometric Brownian Motion. As before, 
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let us divide the analysis into two cases. First, the barrier (or boundary) V* is below the current value for 
the stochastic variable, that is, for the case with a < V0 (e.g., abandon threshold), the expected first 
hitting time if V follows a GBM is:  

  

This kind of equation also appeared in the book of Willmott & Dewynne & Howison (1993, p.371, 
eq.B3). 

For applications of investment option exercise, in general the barrier (threshold) is placed above the 
current level V0. The changes in the above equation are few and ease to understand. So, for the barrier b 
> V0, the first hitting time for geometric Brownian motion is:  

  

 
Numerical example for the first equation (a < V0):  
Assume that V = 10, σ = 25%pa, α = − 20%pa. (drift of dV/V), and the exit threshold is V* = 8.  
What is the expected exit time for the firm?  
Solution:  
α' = − 0.2 − ½ 0.252 = − 26.25%pa.  
So, E[T*(V = 8)] = ln(10/8)/0.2625  

So, E[T*(V = 8)] = 0.85 years (or 10 months).  

See the difference between expected first hitting time and expected value of V in t = 0.85 years.  
E[V(t = 0.85)] = V0 eα ∆t = 10 exp(-0.2 x 0.85) = 8.44 > V* = 8.  

In reality, only at about t = 1.1 years, the expected value of V is V* = 8. Formally, E[V(t = 1.1)] = V* = 
8.  

So, expected first hitting time to reach a certain level is not equal to the time that V is expected to be a 
certain level.  
In a V x t chart, one expected value is calculated in the horizontal (expected first hitting time) and the 
other one is calculated in the vertical (expected value of V). 
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What happens if instead a volatility of 25%pa, this parameter increase to 40%?  
The reader can see that the expected first hitting time E[T*] decreases, whereas it has no effect on the 
expected future value of V, that is, there is no effect on E[V(t)].  

Expected First Hitting Time for Either Upper or Lower Boundaries (Geometric Brownian 
Motion)  

Now, imagine that one firm plan to expand the production (exercising one option to invest) if the 
demand rises to a certain level V**, but if the demand drops to the (nonzero) level V*, the firm will 
abandon the business. What is the expected first hitting time for either thresholds? In other words, what 
is the expected time for V to exit the region between V* and V**?  

The solution is given by Willmott ("Paul Wilmott on Quantitative Finance", 2000, vol. 1, p.163): 

  

Where V0 is the initial value for the stochastic variable, V(t = 0).
 

Now, I discuss some issues related to the above equation, not discussed in the Willmott's book:  
- For V* = 0, in the above equation we need to obtain the limit when V* tends to zero. The resulting 
expression is left as exercise for the reader (tip: there exists the limit except when α = 0.5 σ2).  
- What happens with E[T*] if α = 0.5 σ2 (assuming V* > 0)? Is E[T*] = infinite? Can the value be 
obtained by taking the limit when α tends to 0.5 σ2?  
The answer is: this equation converges to a finite time (recall the discussion on probability of eventual 
absorption). The reader can also verify numerically the convergence by using the spreadsheet simula-
hit_time.xls and letting α' very near 0.5 σ2. Or, by using the analytical limit expression given by:  

  

However, when both V* tends to zero and α tends to 0.5 σ2, we have E[T*] = infinite. 
 

Why? Tip: recall the Dixit's discussion (The Art of Smooth Pasting, p.56) just after his eq.6.10 (or see 
our quotation above).  

 
Download the Excel Spreadsheet "simula-hit_time.xls"
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The spreadsheet below illustrates many formulas above for fixed barrier(s) and generates sample-paths 
for both fixed and variable barrier. This spreadsheet is freeware for educational purposes (hope 
mentioning the source when using it). 

 Download the Excel for Windows file simula-hit_time.xls, with 190 KB.  

The spreadsheet above consider the oil prices P following a geometric Brownian motion (GBM), 
presenting charts and formulas, including some equations not showed explicitly before (GBM case):  
* hitting time probability density for the GBM case; 
* hitting time cumulative probability for the GBM case 
* probability of eventual absorption for one and two barriers for the GBM case, etc.  

 
 

 
4) Hitting Time for Variable Barrier and the Excel "Timing" 
Facilities 
The discussion and the equations above are elegant and relatively simple. However, these methods are 
useful for perpetual options and related applications with a fixed barrier, not for finite lived options 
where we have a variable barrier b(t). In mathematical jargon, b(t) is a free boundary representing the 
threshold curve for optimal option exercise for finite lived options.  

At the best of my knowledge, there is no analytical/closed-form equations for both expected first hitting 
time and expected discount rate, when the barrier is a free-boundary. There are some analytical methods 
for barriers b(t) with some specific (and simple) function of the time, but not for this kind of free-
boundary that cannot be described with a simple function.  
However, numerical methods are available to solve this problem. One alternative is to solve numerically 
the Kolmogorov differential equation. However, I use the Monte Carlo method in order to get both 
expected first hitting time and probability of option exercise because it is much simpler considering that 
I get the free-boundary before the simulation.  

In cases with negative drift and in cases with finite time to expiration, we can think to get both prob
[exercise] and E[T*|exercise], respectively the probability of exercise and the expected first hitting time 
conditional to the option exercise occurrence. With these two informations we can caracterize the 
stochastic problem, providing important information on the future investments schedule, helping the 
capital budget planning.  

Here we are interested only in capital planning problems, because the use of these concepts to solve the 
option pricing problem is not competitive with others methods (including analytical approximations 
available in the literature) for finite-lived American options. 
Hence, I use the real drift α not the risk-neutral drift (recall the discussion in the second section of this 
webpage).  

The picture below illustrates how to estimate the conditional expected hitting time and the probability 
of option exercise using the Monte Carlo approach. The picture shows the free-boundary (threshold 
curve for optimal option exercise) and two sample paths from Brownian motion. The black path reaches 
the free-boundary line (point A) before the expiration, whereas the blue sample path doesn't reach the 
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free-boundary during the option life.  

 

This kind of chart can be reproduced by using the spreadsheet simula-hit_time.xls 

Timing version 2.0 calculates the expected probability of exercise using (Quasi) Monte Carlo 
Simulation. This probability is simply the number of paths that hit the threshold line divided by the total 
number of sample paths simulated. 
In order to download the full functional shareware Timing, click here.  
In order to know more about this applicative, go to Timing webpage. 

Timing version 2.0 also calculates the expected time of option exercise, conditional to the option 
exercise occurrence. This expected first hitting time here is calculated only for the sample paths that hit 
the threshold line and it is the average time of hitting the threshold line for these winner sample paths. 

Timing version 2.0 calculates the optimization problem before and separated of the T* calculus. In 
other words, the free-boundary V*(t) is an input for T* calculation and so is calculated before.  

The software Timing version 2.0 calculates the conditional expected first hitting time and the probability 
of the option to be exercised, for finite lived options, using the Monte Carlo approach. The figure below 
illustrates these facilities in the software "Timing": 
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In the above figure we see that there are two alternatives to calculate the conditional expected hitting 
time and the probability of exercise. The first alternative is by using the more precise hybrid quasi-
random numbers, see the webpage on the quasi-Monte Carlo and the section with hybrid quasi-random 
sample-paths. The second one is by using the traditional pseudo-random numbers (from Excel). 

Note also in the above figure that is required the drift in order to calculate both the expected first hitting 
time and the probability of option exercise. Recall from previous sections that, although in option 
pricing generally we don't need to know the drift, this is not valid for the case of the expected first 
hitting time calculus. Some options properties like the first hitting time do depend of the drift 
(expected growth rate) of the underlying stochastic variable. So, in this Excel application you need to set 
the drift.  

In the last picture, at the extreme right side the simulation buttons are cut. The figure below shows the 
two buttons, one for quasi-Monte Carlo simulation and the other for the traditional Monte Carlo 
simulation. 
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Appendixes 

A) Bibliographical References and Real Options Applications 

 
The results of expected first hitting time, probability distribution of hitting times, and Kolmogorov 
equations applied to Brownian motion, the reader can find further informations in the following books: 
Dixit & Pindyck (1994, appendix chapter 3); Dixit ("The Art of Smooth Pasting", 1993); Ingersoll 
(1987, "Theory of Financial Decision Making"); or Willmott ("Paul Wilmott on Quantitative Finance", 
2000, vol. 1, chapter 10).  
Dixit uses the discrete-time random walk approach to find results in continuous-time with limiting 
arguments. Hence, this more intuitive approach can be preferable for beginners in this field. 

At the best of my knowledge, the earliest application of optimum option exercise using the concept of 
first hitting time, is due Karlin and Taylor (1975) textbook, A First Course in Stochastic Processes 
(pp. 363-365), which the authors find both the threshold and the option value. Their demonstration using 
hitting time probability density and Laplace transformation, is different of the mentioned Dixit & 
Pindyck book (1994, appendix, chapter 9) way, presented here in the Appendix B. Alternative ways 
providing the same results bring more reliability for the results!  
This approach is best explained in the Dixit & Pindyck & Sodal (1997) working paper (published by 
Economic Journal, April 1999, pp. 179-189), which develops an alternative way to find the optimal V*, 
based in the Baily's Ph.D. dissertation, MIT 1995.  
See also a more recent paper of Sodal: "Entry, Exit and Scrapping Decisions with Investment Lags: A 
Series of Investment Models Based on a New Approach", presented at the 5th Annual International 
Conference on Real Options, UCLA, July 2001.  
For perpetual options and in general for problems with a constant barrier, this way to solve the 
investment under uncertainty problem is very promising.  

For the reader interested to go further in mathematical theory of first hitting time, there are methods like 
presented by Karatzas and Shreve (see in their book, second edition, the topics in pp. 2, 79, 94, and 
196, the last one for Brownian motion with drift) using Laplace transforms and mathematical concepts 
like the reflection principle and martingales (considerations based on the optimal sampling theorem for 
martingales).  
OBS: the reader shall pay attention in mathematical texts like that, because most results are for a 
"standard" Brownian motion that is an Arithmetic Brownian motion with volatility equal 1. Although 
the mathematicians consider the extension to a non-unity volatility as a "straightforward rescaling", 
formulas assuming volatility equal one is useless for financial economics practice (unless the user is also 
a specialized mathematician).  

Other very important source (and perhaps easier) for hitting time is the Harrison's textbook. See his 
warning about the use of "reflection principle" - valid only for simmetrical or driftless processes, in the 
introduction and general theory in pp.7-14 and pp.38-42. The book presents an useful focus on expected 
discounted costs (see paragraph 2, p.38, specially p.39, and pp.44-49).  
In addition, although many proofs are performed for the case of unity volatility (σ = 1), he presents the 
general results for any volatility value σ > 0. 

Another excellent source (and also easier than Karatzas and Shreve) is the book of Karlin & Taylor 
(1975), A First Course in Stochastic Processes, second edition.  
See for example the theorem 5.2 (p.361) for the probability that the process reaches the level b (above 
the initial level) before hitting the level a (below the initial level). 
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The most interesting case is the optimization problem for a perpetual option: they show how to compute 
the threshold (early exercise level) using the concept of expected first hitting time (see pp.363-365).  

A classical textbook that remains as a valuable reference is Cox & Miller (1965), The Theory of 
Stochastic Processes. See the chapter 5 for proofs of some equations presented in this webpage. 

Why the expected first hitting time is useful in real options? Let us answer with some examples 
(consulte the bibliographical list webpage for the complete reference):  

In the Dixit & Pindyck book (chapter 9), they show an "option game" model application: 
analyzing a duopoly they use it to calculate the expected present value of the leader and follower 
payoffs;  
A working paper of Gauthier & Morellec (1996) examines the effects of noise information on 
investment decisions for real assets. They use the first hitting time computation (using Laplace 
transform, following Karatzas and Shreve) to find out the solution for both the investment option 
value and the threshold value.  
In the NBER Working Paper #5971, Dixit & Pindyck & Sodal (1997) show general applications 
of this concept for general investment under uncertainty analysis (with the same results of other 
methods, namely contingent claims analysis and Bellman-dynamic programming) performing an 
analogy with macroeconomic concepts of optimal markup and elasticities;  
Mauer & Ott (Journal of Financial and Quantitative Analysis, December 1995), present a model 
for replacement investment decisions, using the expected first hitting time to estimate the time that 
the operational+maintenance costs C rise to a critical level where is optimal to replace the assets.  
There are interesting potential applications for financial options, for example:  
(a) C. Zhou (working paper, Federal Reserve Board, May 1997) uses the expected first hitting 
time to derive an analytical result for the default correlation. In his model, the total assets of a firm 
values Vi declines to a default threshold K which is expected to occur at first hitting time T*.  
(b) P. Carr (working paper, Morgan Stanley, May 1997) develops a model for exotic options 
(barrier). An up-and-in put turns into vanilla put with pre-specified exercise price and maturity 
when reach an upper threshold which occur at the hitting time of the underlying asset. An 
American binary call earns a fixed amount (which can be the price of the underlying asset) when 
the underlying asset hit an upper barrier (and pays off nothing if the underlying asset price ends up 
below the strike price). These hitting times are not known in advance (are random). In his paper, 
the author focused the static hedging of this timing risk using the expected first hitting time 
concept;  
My particular interest is the intertemporal optimization of a portfolio of projects (imagine a 
specific project in the portfolio: if the waiting policy is the optimal, when is expected to start a 
project?), that is, the capital planning problem mentioned before. With the optimal schedule, a 
further adjustment is performed in function of resources constraints. In this portfolio case, the 
options to invest in projects are finite-time options (with some exceptions), so that we need some 
tool like the one presented by Timing version 2.0.  

 

 
B) Expected Discount Factor: Proof and Applications 

Suppose an expected discount factor in continuous time, with a generic (exogenous) discount rate ρ: 
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f(V) = E[e− ρ τ] 

Denoting the first hitting time as T* (first time that V is equal or larger than V*), here representing when 
the option to invest will be optimally exercised, the expected discounted payoff from T* to current date 
is exactly the current value of the option to invest. Assuming that the current V < V* and by choosing an 
interval dt sufficiently small that hitting the threshold V* in the next short time interval dt is an unlike 
event, the problem restarts from a new level (V + dV). Therefore we have the dynamic programing-like 
recursion expression:  

f (V) = e− ρ dt E [ f (V + dV) | V] = e− ρ dt { f(V) + E [ df(V) ] } 
 

By noting that:  
(a) V follows a geometric Brownian motion with drift α and volatility σ; and  
(b) Using the Itô's Lemma for expanding df (V), and using the subscripts to denote derivatives we have: 

df = fV (α V dt + σ V dz) + 0.5 fVV (σ2 V2 dt) = fV α V dt + fV σ V dz + 0.5 fVV σ2 V2 dt
 

Note that we are supposing the infinite time horizon (perpetual option) case so that the variable time is 
not included in the Itô's Lemma.  
By substituing df into the previous equation and by noting that E[dz] = 0, and letting e− ρ dt = 1 − ρdt for 
a very small dt, we get: 

f (V) = (1 − ρdt) { f + fV α V dt + 0.5 fVV σ2 V2 dt } 
 

With a few algebra (remember dt2 is zero) the reader can find out the following differential equation:
 

1/2 σ2 V2 fVV + α V fV − ρ f = 0 
 

Where the subscripts denote derivatives. The general solution is:  

f (V) = A1 Vβ1 + A2 Vβ2 
 

Where β1 and β2 are the respectively the positive and the negative roots of the standard quadratic 
characteristic equation from the differential equation (see an instructive discussion of the characteristic 
equation in chapter 5, section 2.A, of Dixit & Pindyck book).  

Applying two boundary conditions: as V approximates to the threshold V*, T* is probable to be small 
and the discount factor f(V) close to 1, so f(V*) = 1. When V is close to zero, T* is likely to be large and 
so the discounted factor close to zero, therefore f(0) = 0 (note: alternatively, I think is possible to see V 
= 0 as an absorbing barrier, so when V tends to zero, T* tends to infinite or there is no finite time for V 
to reach the threshold from V = 0).  
With these results, we can see that A1 = (1/V*)β1 and A2 = 0.  

Therefore the solution for the expected discount factor is:  

f(V) = E[e− ρ T*] = (V/V*)β1
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Where V is the initial value of the stochastic variable, that is, at t = 0. So the expected first hitting time is 
estimated by assuming that T* is finite. The parameter β1 is given by the equation (positive root of the 
fundamental quadratic equation, see the quadratic equation and a discussion at the end of the next 
appendix):  

 

The case of contingent claims is similar, by substituing the discount rate ρ by the risk-free interest rate r 
and by replacing the real drift α by the risk-neutral drift r − δ. See more details about contingent claims 
x dynamic programming in Appendix C.  

For an application of these kind of hitting time expectation, see the leader value in symmetric duopoly 
under uncertainty.  
A similar demonstration of these kind of expectations for option-games can be found here. 

For an even more general approach (for any stochastic process) and a more detailed discussion using 
hitting time, see the working paper of Dixit & Pindyck & Sodal (1997).  

 
 
 

 
C) The Dynamic Programming and Contingent Claims Equivalence and the 
Fundamental Quadratic Equations  

The two most used approaches for dynamic optimization under uncertainty are Bellman's equation 
(dynamic programming under uncertainty) and contingent claims. It is true that there exist also the 
Lagrangian method developed by G. Chow and the hitting time approach (Dixit & Pindyck & Sodal) 
discussed above which the following discussion is useful.  
For each method the drift and discount rates have special features which is discussed briefly in this 
appendix.  

In situations where is reasonable to assume the market as sufficiently complete is preferable to use 
contingent claims approach and in this case the general PDE (partial differential equation) for several 
real options problems is:  

0.5 σ2 V2 FVV + ( r − δ ) V FV − r F = − Ft

 

Where F is the option, V is the project value (the underlying asset), and the subscripts denote partial 
derivatives.  
This is also the Black-Scholes PDE (call or put, depending of the boundary conditions) for the case of 
stock with dividend yield.  
Now, if we don't know if the market is complete, people could be use the Bellman's equation (dynamic 
programming under uncertainty), assuming an exogenous discount rate ρ and the PDE for several real 
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options problems is:  

0.5 σ2 V2 FVV + α V FV − ρ F = − Ft

 

The equivalence:  
if the market is sufficiently complete to be priced by arbitrage (so there exists an unique equivalent 
martingale measure) you can substitute the drift into the last PDE: α = r − δ AND substitute ρ = r.  
The first and the second PDE are equal with that substitution.  
In others words, by changing the drift is possible to use the risk-neutral valuation.  

See Dixit & Pindyck book (1994, chapter 4, the comment of eq.20), which the authors explain the 
equivalence of these two approaches for geometric Brownian case. For a further general discussion 
about the equivalence between the two approaches for real options, see the same book, chapter 4, section 
3.  

We use one specific case of the PDE for the hitting time problem: the perpetual option case. In this 
case the derivative of option in relation to the time is zero ( Ft = 0 ).  
The perpetual option has an analytical solution that needs to know the roots from the fundamental 
quadratic equation from the differential equation. In general only the positive root is required, but in 
hysteresis model and other models with entry and exit options, are necessary both positive and negative 
roots. This quadratic equation, for the standard dynamic programming approach with geometric 
Brownian motion, is given by:  

0.5 σ2 β ( β − 1 ) + α β − ρ = 0 
 

With ρ > α.  
The positive (and > 1) root solution is:  

 

If instead the parameter that you know is δ, set the drift α = ρ − δ, and the fundamental quadratic is:  

0.5 σ2 β ( β − 1 ) + ( ρ − δ ) β − ρ = 0 
 

For complete market/contingent claims approach, the fundamental quadratic (characteristic) equation is 
the above equations but setting α = r − δ AND substitute ρ = r, so the quadratic equation becomes:  

0.5 σ2 β ( β − 1 ) + ( r − δ ) β − r = 0 
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