

IND 2072: Análise de Investimentos com Opções Reais

Parte 6: Investimentos em exploração e em P&D: incerteza técnica, valor da informação e medidas de aprendizagem.

Marco Antonio Guimarães Dias, Professor Adjunto, tempo parcial

Rio de Janeiro, 1º Semestre de 2006

Incerteza Técnica e Opções Reais

- Incerteza técnica é aquela relacionada com as características específicas de um projeto. Exemplos:
 - A chance de sucesso técnico de um projeto de P&D;
 - As incertezas sobre a existência, sobre o volume e sobre a qualidade/produtividade de uma reserva de petróleo; e
 - Incerteza sobre o MTBF (tempo médio entre falhas) de um novo equipamento feito com uma nova tecnologia.
- ◆ A incerteza técnica incentiva o investimento em processos de aprendizagem da função lucro.
 - → Modelos de opções de aprendizagem ou valor da informação
- A característica comum é que a incerteza técnica não é correlacionada com os movimentos da economia.
 - Proposição: A incerteza técnica não demanda prêmio de risco por parte de corporações com acionistas diversificados.
 - ⇒ Prova: com a correlação = zero, CAPM $\Rightarrow \beta = 0 \Rightarrow \text{prêmio} = 0$

Incerteza Técnica e Neutralidade ao Risco

- ◆ Por não demandar prêmio de risco, as distribuições de probabilidades das incertezas técnicas já são naturalmente neutras ao risco.
 - Elas não necessitam de nenhum ajustamento ao risco como ocorre com as incertezas de mercado, para poder usar a taxa de desconto livre de risco em modelos de OR.
 - Logo, em modelos de OR pode-se combinar distribuições de probabilidade neutras ao risco da incerteza econômica com as distribuições advindas de incerteza técnica.
 - → Veremos modelos de OR com simulação de Monte Carlo.
 - Não demandar prêmio de risco é apenas um dos aspectos da incerteza técnica e não significa que ela seja menos relevante que a incerteza de mercado.
 - →Ao contrário dos acionistas, os gerentes podem fazer melhor do que apenas diversificar, eles podem alavancar o valor da firma através do exercício ótimo de opções de aprendizagem

OR em Pesquisa e Desenvolvimento (P&D)

- Do ponto de vista da análise econômica, a atividade de P&D é parecida com a atividade de exploração de petróleo.
 - Ambas não geram receitas imediatas, mas são opções de aprendizagem que <u>revelam informações</u> (learning by doing) e <u>novas</u> <u>opções</u> de investimento no desenvolvimento de produtos (<u>opções</u> <u>compostas</u>). Ou seja, em caso de sucesso, geram opções de desenvolver produtos que, se exercidas, irão gerar receitas.
- Além disso, projetos de P&D, assim como projetos exploratórios, têm valiosas <u>opções de abandono</u> que pode recomendar *iniciar* o projeto.
 - > O gerente de P&D tem a opção, mas não a obrigação, de continuar o projeto de P&D. Só continua em caso favorável: limita as perdas ao investimento inicial e mantém o *upside*.
 - Empresas farmacêuticas (que investem pesado em P&D e que estão dentre as que mais usam OR) exercem com freqüência a opção de abandonar projetos de P&D que se revelam não atrativos: o segredo está na minoria dos projetos que obtém sucesso (e pagam com sobras todo o programa de P&D).

Uso de Opções Reais (OR) em P&D

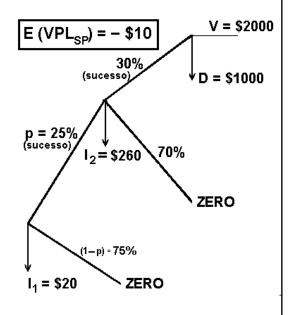
- Diversas empresas americanas e européias usam OR para analisar projetos de P&D. Alguns exemplos:
 - Eletrônica: Philips (DVD nos anos 90's e outros).
 - Farmacêuticas: Merck, Schering Plough, Glaxo-Wellcome
 - Biotecnologia: Genzyme Corp. (bio-cirurgia), etc.
- ◆ O caso da Merck (investe ~ 1 bi/ano em P&D), reportado na Harvard Business Review (Jan/Feb, 1994), é bem conhecido.
 - Merck usa opções reais e teoria dos jogos. CFO Judy Lewent:
 - "To me, all kinds of business decisions are options";
 - > "Options analysis provides a more flexible approach to valuing our research investments";
 - > "When you make na initial investment in a research project, you are paying na entry fee for a right, but you are not obligated to continue that research at a later stage";
 - > "... we have to ask ourselves, 'Do we continue to invest?' Those are the kinds of decisions we face every day".

Exemplo de P&D: Ganho com Revisão de Probabilidades de Sucesso

- ◆ Existe muita literatura e uma grande quantidade (várias dezenas) de modelos de opções reais em P&D.
 - Começaremos com um exemplo simples para ilustrar um dos conceitos.
- Suponha um projeto de P&D para buscar a vacina contra a AIDS, baseado numa grande idéia de uma tese de Ph.D. sobre o tema, financiada por uma firma
 - Suponha que em caso de sucesso, o valor do projeto de fabricação de vacinas V = \$2 bilhões e o custo (investimento) de desenvolvimento D = \$1 bilhão são fixos (⇒ VPL = 1 bi)
- ◆ A tese de Ph.D. previu um investimento inicial de \$20 milhões em pesquisa básica, com 25% de sucesso
 - Caso tenha sucesso inicial, se poderia investir pesado em P&D (\$260 milhões) para testes de longa duração em animais, seres humanos, efeitos colaterais, mutação, etc.

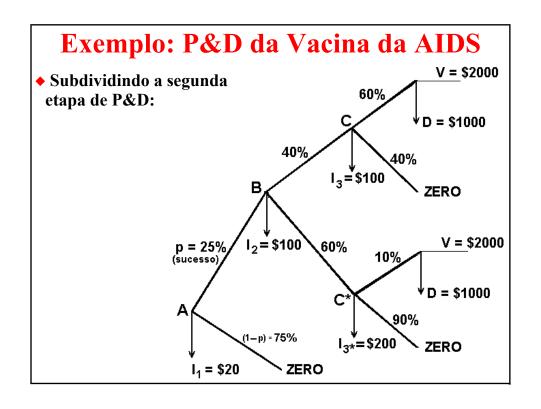
Exemplo: P&D da Vacina da AIDS

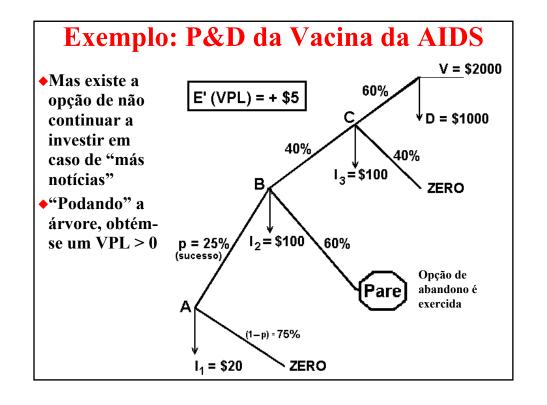
- A árvore (compacta) do projeto mostra as revisões de valores de probabilidades de sucesso
- Valores estão todos atualizados e estão em milhões de \$
- O VPL é negativo. O projeto deve ser rejeitado?



Exemplo: P&D da Vacina da AIDS

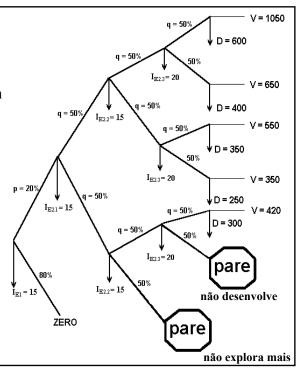
- ◆ O VPL é negativo mas o custo I₂ = \$260 milhões e o prazo dessa etapa são incertos.
- Pode-se <u>subdivir</u> a fase maior de P&D em pelo menos dois cenários que se *revelariam* após gastar os primeiros \$100 milhões:
 - <u>Favorável</u>: os testes iniciais deram certo, os efeitos colaterais parecem controláveis/pequenos, a conclusão dessa etapa parece próxima, de forma que gastando <u>mais</u> \$100 milhões, estima-se que uma probabilidade de sucesso de 60% para obter a vacina;
 - <u>Desfavorável</u>: testes iniciais não foram muito bem, alguns efeitos colaterais ainda não tem boa solução, etc. Há idéias secundárias e/ou derivadas da idéia inicial para testar, mas isso significa atraso no projeto, menor chance de sucesso e gasto adicional de \$200 milhões para obter chance de sucesso de apenas 10%.





Analogia com Exploração

- Dias (1997) mostrou um exemplo análogo para exploração de petróleo (delimitação de campo)
- O VME do prospecto sem considerar a opção de abandono era negativo (- 5 MM\$)
- O exercício ótimo da opção gerou o ganho de \$ 9 MM e o prospecto passou a ser positivo



Exemplo: P&D da Vacina da AIDS

- O gerenciamento ativo, em que se pode exercer a opção de abandonar o projeto em função da informação revelada com o investimento feito, mostra que o projeto é viável economicamente:
- E' (VPL) = $-20 + [0.25 \text{ x} \{-100 + (0.40 \text{ x} [-100 + 0.6 \text{ x} (2000 1000)])\}] = +\$5 > 0 \Rightarrow \text{aceita projeto}$
- Repare que os valores de probabilidades e de custos esperados estão coerentes desde a primeira figura (árvore). Apenas se expandiu esses valores.
- ◆ O ganho poderia até ser maior se subdividirmos ainda mais o investimento de \$260 milhões (mais "gates" de decisão).
 - A reavaliação frequente do projeto de P&D cria valor.

Fases dum Projeto de Remédio nos EUA

- ◆ Nos EUA existem fases bem definidas que devem ser trilhadas antes da aprovação do medicamento por parte do governo (Federal Drug Administration)
 - Essas fases são mostradas a seguir. Mas antes dessas fases já teriam tido outras, tais como o financiamente de Ph.D. e a pesquisa básica para obter o produto (descoberta).

Testes Fase I de Fase II de Fase III Aprovação Pré-Clínicos experimentos experimentos da FDA (1 ano) (2 anos) (2 anos) (1 ano)

- Nos testes pré-clínicos e na Fase I são usados apenas animais. Nas Fases II e III são feitos testes em seres humanos. O investimento no desenvolvimento só se dá após a aprovação da agência (FDA). Existe a opção de abandono após cada fase.
- Depois ainda são feitos testes pós-aprovação, por ex., para desenvolver extensões do produto, dosagens para crianças, etc.

Incerteza Técnica e Opções Compostas

- A incerteza técnica gera oportunidades de investimentos seqüenciais. Quando é que a primeira opção se torna "deep-in-the-money" (madura para o exercício imediato)?
 Para responder, veremos um exemplo simples em petróleo.
 - Seja um prospecto exploratório em que existe um fator de chance FC de achar petróleo (incerteza técnica na existência de petróleo) e, logo, com chance 1 – FC de ser um poço seco.
 - → A opção exploratória E(P, t) é função do preço do petróleo P que segue um MGB e do tempo t (ver abaixo). O preço de exercício da opção é I_w, que é o investimento no poço pioneiro ("wildcat").
 - → Por simplicidade, assuma que a perfuração do poço é instantânea
 - Em caso de descoberta, a firma obtém uma opção real R(P, t) de desenvolver o campo. A opção é finita: existe um tempo legal máximo T (expiração) para a firma descobrir petróleo e se comprometer com um plano de desenvolvimento imediato.
 - → O preço de exercício da opção de desenvolvimento é I_D, o qual é assumido determinístico por simplicidade (assim como I_W).

Opções Compostas em Exploração

- ◆ Em caso de <u>exercício da opção exploratória</u> E(P, t), obtémse o valor monetário esperado VME = - I_W + FC . R(P,t).
- ◆ Em caso de descoberta de petróleo e em caso de <u>exercício da opção de desenvolvimento</u> R(P, t), obtém-se o VPL de desenvolvimento: VPL = V(P) - I_D.
 - Vamos assumir o modelo de negócios: V(P) = q B P, onde q = qualidade da reserva e B = volume da reserva.
- ◆ Como sempre, o problema é resolvido "backwards", i.é, primeiro calcula-se R(P, t) e depois E(P, t).
- ◆ Seja P* o gatilho em que a opção de desenvolvimento R(P, t) fica "deep-in-the-money" p/ o exercício imediato.
- ◆ Seja P** o gatilho em que a opção exploratória E(P, t) fica "deep-in-the-money" para o exercício imediato.
 - Além disso, é necessário que P** ≥ P*. Por que? Será visto.

EDP e cc's da Opção de Desenvolvimento

- ◆ A equação diferencial parcial (EDP) de R(P, t) é <u>igual</u> à EDP de Black-Scholes-Merton, já mostrada. Por que?
 - Essa EDP depende apenas de: (a) processo estocástico do ativo básico P (aqui MGB); (b) se o tempo t é variável de estado (é o caso); (c) se o derivativo R tem ou não fluxo de caixa (aqui não tem). Como sempre, os detalhes do modelo ficam p/ as cc's:

$$\begin{split} EDP: & \frac{1}{2} \, \sigma^2 \, P^2 \, \frac{\partial^2 R}{\partial P^2} \, + \, (\mathbf{r} - \delta) \, P \, \frac{\partial R}{\partial P} \, - \, \mathbf{r} \, R \, + \, \frac{\partial R}{\partial t} \, = \, 0 \\ Condições \\ de \\ contorno (cc): & \begin{cases} R(0,\,t) = 0 & , & \text{se } P = 0 \\ R(P,\,T) = max(q \, B \, P - I_D,\,0) & , & \text{se } t = T \\ R(P^*,\,t) = q \, B \, P^* - I_D & , & \text{se } P = P^* \\ \frac{\partial R(P^*,\,t)}{\partial P} = q \, B & , & \text{se } P = P^* \end{cases} \end{split}$$

c

EDP e cc's da Opção Exploratória

- ♦ A EDP de E(P, t) também é <u>igual</u> à EDP de B&S&M.
- O que muda são as cc's. A novidade aqui é que <u>só é</u> <u>ótimo exercer E(P, t) se, em caso de sucesso, a opção</u> R(P, t) já estiver "deep-in-the-money", i.é, P** ≥ P*.
 - Não tem sentido exercer a opção E(P,t) se depois o melhor for apenas esperar, pois com r>0 é sempre melhor postergar I_w .
 - → A alternativa esperar dt é melhor pelo menos r I_W dt do que a de exercer já E e depois esperar pelo menos dt para exercer R.

$$\begin{split} & EDP \colon & \frac{1}{2} \, \sigma^2 \, P^2 \, \frac{\partial^2 E}{\partial P^2} \, + \, (r - \delta) \, P \, \frac{\partial E}{\partial P} \, - \, r \, E \, + \, \frac{\partial E}{\partial t} \, = \, 0 \\ & \\ & Condições \\ & de \\ & contorno \, (cc) \end{split} \quad \begin{cases} & E(0,\,t) = 0 & , \quad \text{se } P = 0 \\ & E(P,\,T) = max[-\,I_W + FC\,\,(q\,B\,P - I_D),\,0] \,\,, \quad \text{se } t = T \\ & E(P^{**},\,t) = -\,I_W + FC\,\,(q\,B\,P^{**} - I_D) & , \quad \text{se } P = P^{**} \\ & \frac{\partial E(P^{**},\,t)}{\partial P} = FC\,\,q\,B & , \quad \text{se } P = P^{**} \end{cases}$$

Exercício Antecipado de Opção Composta

- ♦ Outra forma de ver que $P^{**} \ge P^*$:
 - Seja o caso mais favorável com FC = 1 (\Rightarrow com o menor P**).
 - 2 A opção R pode ser vista como ativo básico da opção composta E (pagando I_W se obtém R). Mas foi visto na parte 1 que existe um teorema mostrando que <u>a condição necessária (mas não suficiente) para o exercício antecipado ótimo de uma opção americana é o ativo básico pagar dividendos (fluxo de caixa).</u>
 - So A opção R só "paga dividendos" se ela estiver "deep-in-themoney" (⇒ só se P ≥ P*), pois nesse haveria fluxo de caixa > 0. Logo, P** ≥ P*. Assim, foi provado para o caso de FC = 1.
 - Se FC < 1, então P** é ainda maior que no caso FC = 1. (cqd)</p>
- ◆ Seja o <u>caso geral</u> em que a primeira opção pode revelar n (ou infinito) cenários que afetam o valor da 2ª opção:
 - A condição *necessária* para o exercício *antecipado* da 1º opção é que, em pelo menos um cenário com probabilidade > 0, a 2º opção esteja "deep-in-the-money" de forma a ter fluxo de caixa > 0.
 - → Aqui eram dois cenários, com o cenário "sucesso" com prob. FC > 0

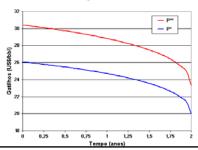
(

Solução Numérica: Simplicidade do MGB

- ◆ A solução do modelo (opções R e E e gatilhos P* e P**) é numérica e pode ser feita, por ex., com diferenças finitas.
- No entanto, mais uma vez podemos usar o código VBA fornecido, graças mais uma vez à homogeneidade em V e I da opção F(V, I, t), propriedade válida para o MGB.
 - Dada uma constante k, então: F(V, I, t) = k F(V/k, I/k, t). Ou seja, F(V, I, t) tem cc do tipo V I, enquanto que F(V/k, I/k, t) tem cc do tipo V/k I/k, a escala da opção é colocada nas cc.
 - Com V = q B P, faz k = q B. Assim, o valor da nossa opção R(.) com cc. tipo q B P I_D, é k vezes R(.) com cc. do tipo P I_D/k.
 - Além disso, vimos na parte 2 que se o preço P segue um MGB e o valor do projeto V é proporcional a P (i.é, V = k P), então V segue também um MGB e com os mesmos parâmetros (δ, σ) de P
 - → Com o lema de Itô mostra-se que a <u>EDP</u> R(V, t) é <u>igual</u> a R(P, t), com V no lugar de P. <u>Como as cc são iguais, a solução é igual</u>.
 - → <u>Código VBA</u>: faz V = q B P e preço de exercício I_D , tem R(P, t). O gatilho V^* obtido é dividido por q B para ter $P^* = V^*/(q B)$.

Solução do Modelo para E(P, t)

- Para a opção E, também pode usar o mesmo software, mas o truque é um pouco mais sutil e usa P** ≥ P*.
 - Se chamar V' = k' P = FC q B P e preço de exercício igual a I_W + FC I_D, a EDP e as cc de E(V', t) são iguais às de E(P, t).
 - Nas cc., como em P** a opção R = VPL (pois P** ≥ P*), o valor da opção R(V', t) obtido com o software é o mesmo de R(P, t). Com o gatilho (V')* achamos P** = (V')* / (FC q B).
 - Ver <u>planilha Excel</u> que usa o mesmo código VBA de antes.
 Ela mostra, por ex., as curvas de gatilhos P*(t) e P**(t):

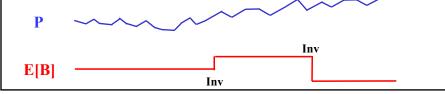


Modelos de OR com Incerteza Técnica

- ◆ Seja a opção composta: a firma tem uma patente e pode fazer P&D a um custo I₁ para obter um bem de capital.
 - Existe um fator de chance FC da firma obter sucesso no P&D
 - Além disso, o P&D permitirá ter uma boa idéia do MTBF (tempo médio antes de uma falha) do bem de capital:
 - Seja f = MTBF / MTBF_{máx} o fator operacional que antes do P&D tem distribuição triangular (mín., moda, máx.) = (0,4; 0,7; 1).
 - Em caso de exercício da opção de P&D e em caso de sucesso, pode-se desenvolver um projeto com esse bem, investindo I₂, para obter um VPL_{Desenv} = f V - I₂, onde V segue um MGB.
 - Assim, tem incertezas técnicas sobre o sucesso (FC) e sobre a eficiência da tecnologia (f), além da incerteza de mercado (V).
 - O P&D irá revelar informação sobre f devido ao aprendizado obtido. Se tivermos os possíveis cenários revelados com o P&D, podemos combinar as incertezas com uma simulação de MC.
 - → Para resolver esse problema precisaremos de uma teoria prática sobre incerteza técnica e aprendizagem/valor da informação.

Modelos de OR com Incerteza Técnica

- ◆ Embora existam diversos artigos de OR sobre opções de aprendizagem, a modelagem da incerteza técnica em sí tem deixado a desejar, com algumas poucas exceções.
 - Tem artigos tentando usar processos estocásticos (ex. MGB) para incerteza técnica, o que é conceitualmente inadequado.
 - → A incerteza técnica não muda com a simples passagem do tempo como no MGB. As variâncias não evoluem como no MGB.
 - → As amostras de caminhos dos processos de incerteza de mercado (preço do petróleo P, que oscila todo dia no mercado) e da incerteza técnica (do volume de reserva B, cuja expectativa só muda quando há investimento em informação), ilustra esse caso:



Modelagem de Incerteza Técnica para OR

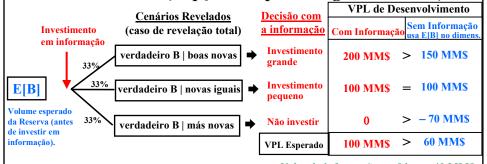
- Na minha tese de doutorado desenvolvi uma teoria para incerteza técnica e investimento em informação visando principalmente as aplicações de opções reais. Resumo:
 - O conceito chave é *processo de revelação* como um *processo de redução esperada de incerteza* (medida pela variância).
 - → Esse processo só ocorre com o exercício de opções de aprendizagem
 - Trabalha-se com distribuições de revelações geradas pelo investimento em informação (exploração, P&D).
 - Uso uma teoria para medidas de aprendizagem e proponho a medida η^2 = redução percentual esperada de variância.
 - → A medida η² está diretamente ligada à teoria da distribuição de revelações (pois é a sua variância normalizada).
 - É fácil incorporar em modelos de P&D existentes, por ex., Martzoukos (2000) e Martzoukos & Trigeorgis (2001):
 - > V(P; parâmetros incertos): $dV/V = \alpha dt + \sigma dz + \sum_i \phi_i dq$

Incerteza Técnica: Ameaça e Oportunidade

- ◆ A incerteza técnica tem dois lados: o lado da *ameaça de exercício subótimo* da opção de desenvolver um projeto e o lado da *oportunidade de investir em informação*.
- ◆ Ameaça: a incerteza técnica diminui tanto o valor presente líquido (VPL) dos projetos como o valor das opções reais
 - A incerteza técnica *quase certamente* levará ao exercício da opção <u>errada</u> de projeto de desenvolvimento (escala do investimento, tecnologia a ser usada e até padrões de segurança inadequados)
 - O projeto sub-ótimo gera ou over-investimento ou sub-investimento quando comparado com o nível ótimo de investimento que maximiza o VPL ou OR
 - Essa incerteza pode levar ao exercício da opção quando o melhor é <u>não</u> exercer a opção (esperar seria melhor p/ o verdadeiro valor)
 - Pode levar ao <u>não</u> exercício da opção quando o melhor é exercer a opção logo (opção deep-in-the-money para o verdadeiro valor).
 - Logo a incerteza técnica diminui o valor devido a decisões subótimas, e não devido à taxa de desconto ou "utilidade do gerente"
- Oportunidade: modelos de opções de aprendizagem

Incerteza Técnica: Ameaça e Oportunidade

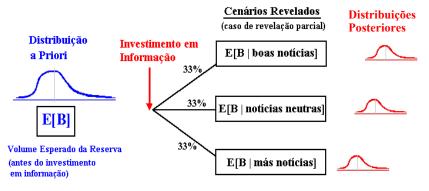
- ◆ Incerteza técnica gera a <u>ameaça</u> de exercício sub-ótimo da opção desenvolvimento. Mas isso é somente um lado da moeda.
- ◆ Incerteza técnica cria também uma <u>oportunidade</u>: gera a *opção de investir em informação* antes da decisão de desenvolvimento (a *opção de aprendizagem* é valiosa)



- Valor da informação perfeita = 40 MM\$
- O valor dinâmico da informação será capturado pelo modelo de opções reais
- ullet Será usada uma equação $I_D(B)$ para o *investimento ótimo* de desenvolvimento

Informação Imperfeita ou Revelação Parcial

 Nova informação reduz a incerteza técnica mas usualmente alguma incerteza residual permanece (a revelação é parcial)

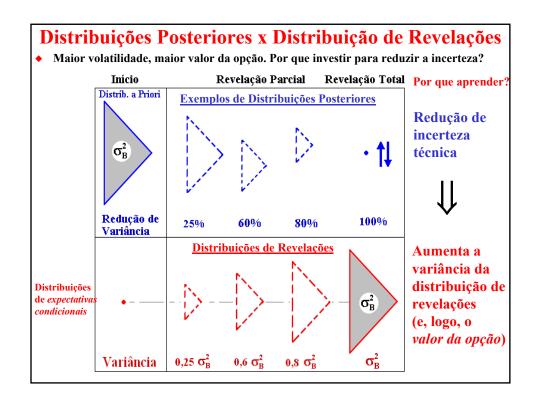


- Aqui existem 3 distribuições posteriores. Para o caso de cenários contínuos da informação (ou sinal S), existiriam infinitas distribuições posteriores!
 - É muito mais simples trabalhar com a <u>única</u> distribuição de expectativas condicionais (que será chamada de distribuição de revelações)
 - A palavra "revelação" sugere um processo em direção à verdade (de B)

12

Distribuições de Revelações: Teorema 1

- ◆ Ex-ante (antes da informação), E[X | S] é uma variável aleatória
 - Distribuição de revelações é a distribuição de $R_x(S) = E[X \mid S]$
 - →A distribuição de revelações será usada em simulações de Monte Carlo, numa abordagem neutra ao risco, combinando várias fontes de incerteza
 - → E[X | S] é o melhor estimador em econometria. Uso natural em finanças.
- Teorema 1: principais propriedades da distribuição de revelações
 - <u>Limite</u>: em caso de *revelação total*, a distribuição de revelações é <u>igual a distribuição a priori</u> da variável com inc. técnica (X)
 - Média: é igual a média original da distribuição a priori, i. é,
 → E[E[X | S]] = E[R_x] = E[X] (chamada de lei das expectativas iteradas)
 - Venificación formal a nedvaña con anada de nanificación devida a C
 - Variância: é igual a redução esperada de variância devido a S
 → Var[E[X | S]] = Var[R_x] = Var[X] E[Var[X | S]] (= redução de variância)
 - Martingale: a sequência de sinais $\{S_k\}$ gera um processo de revelação
 - $\{R_{X,1}, R_{X,2}, R_{X,3},...\}$ que é um <u>martingale</u> (v.a. com mesmas médias)
 - → A seqüência {S_k} é uma seqüência de exercícios de opções de aprendizagem

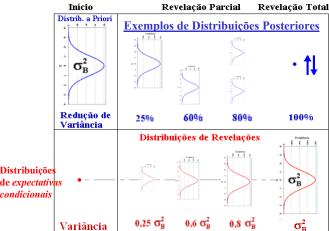


Distribuições de Revelações

- ◆ Distribuição Quase-Definida: é uma distribuição em se conhece pelo menos a média, a variância e que pertence a um processo sequencial de distribuições com distribuição inicial conhecida e que seja convergente a uma distribuição também conhecida.
 - Com o Teorema 1, as distribuições de revelações (ou de expectativas condicionais) são quase definidas, pois temos a média, a variância e conhecemos o valor inicial (ponto) e final (distribuição a priori) de um processo seqüencial.
 - Na figura anterior, o tipo de distribuição é desenhado pontilhado por não sabermos exatamente o seu tipo.
 - **→**Em muitos casos, a aproximação das distribuições serem de tipos iguais ao da distribuição a priori, é razoável.
- ◆ No caso particular (mas muito importante na prática) das distribuições normais para X e S, as distribuições de revelações são totalmente definidas.

O Caso Exato para Distribuições Normais

- No caso de distribuições normais p/ a variável de interesse e p/ o sinal, a distribuição de revelações é também normal para ∀ redução de variância. Se X ~ N(m_s, σ_s²); S ~ N(m_s, σ_s²):
 - Posteriores: $X \mid S = s_i \sim N(m_x + \rho \sigma_x (s_i m_s) / \sigma_s, \sigma_x^2 (1 \rho^2))$
 - Para distribuições normais, redução % variância = ρ².
 Início Revelação Parcial Revelação Total



Para cada % redução de variância, existem infinitas distribuições posteriores e uma única distrib. de revelações.

Expectativa Condicional: E[X | S] ~ N(m_x, σ_x² ρ²) Aqui E[X | S] é distrib. Normal exata para ∀ redução % de variância

Distribuição de Revelações e Aplicações

- ◆ Logo, num problema de OR com incerteza técnica em X, o <u>exercício da opção de aprendizagem</u> gera distribuições de revelações das variáveis com incerteza técnica.
 - Essas distribuições de revelações podem ser combinadas com processos estocásticos neutros ao risco num modelo de OR.
 - A distribuição de revelações é obtida com a distribuição a priori de X e a redução % esperada da variância η²(X | S_k), a qual mede a aprendizagem sobre X advinda da revelação do sinal S_k.
- ◆ Ex.: um projeto de P&D de um novo processo industrial, tem fator de chance FC e irá revelar cenários (aprender) sobre os seguintes fatores com incertezas técnicas:
 - Consumo de combustível/produto (entra na função custo oper.)
 - MTBF, que influencia a receita acumulada e o custo operacion.
 - Fator custo de material, que influencia o investimento (preço de exercício da opção de desenvolvimento, depende do P&D);
 - Qualidade do produto q, que influencia a função receita.

Alternativas de Investimento em Informação

- Aplicação: considere um campo de petróleo já descoberto, com alguma incerteza técnica em q e B. Sejam K alternativas mutuamente exclusivas de investimento em informação
 - Qual a melhor alternativa? Quanto vale o campo não-desenvolvido?
- ♦ Métodos tradicionais de valor da informação (VOI), são <u>limitados</u>:
 - Consideram apenas alguns <u>poucos cenários</u> (típico = 3) revelados;
 - Muitas vezes assumem informação perfeita (revelação total com S_k);
 - Não comparam <u>alternativas</u> de investimento em informação com diferentes custos e diferentes potenciais de aprendizagem;
 - Não consideram as <u>interações das incertezas</u> técnicas com as de mercado, apesar de ambas afetarem o valor econômico da reserva;
 - Ignoram o tempo legal de expiração dos direitos e o tempo de aprender
- ◆ A solução aqui irá considerar <u>5 variáveis de estado</u>: tempo (existe uma expiração de direitos); 2 processos estocásticos correlacionados (MGB), o preço do petróleo P e o investimento no desenvolvimento I_D (que será função de B); e as v.a. com incerteza técnica q e B.
 - Dados: distribuições a priori de q e B e as medidas $\eta^2(q \mid S_k)$ e $\eta^2(B \mid S_k)$.
 - Nesse contexto, o valor da informação é dinâmico (considera o tempo)

Investimento em Informação em Petróleo

- Usaremos o modelo de negócios para o caso de exercício da opção de desenvolvimento: VPL = V - I_D = q B P - I_D.
 - Nesse caso, q e B têm incertezas técnicas que podem ser reduzidas (aprendizagem) com o investimento em informação.
 - Algumas alternativas de investimento em informação: a perfuração de um poço vertical; a perfuração de um poço horizontal; um teste de longa duração em um poço; um sistema piloto de produção, etc.
- Além disso, considere que a escala ótima de investimento de desenvolvimento I_D depende do volume de reserva B:
 - Quanto maior B, maior o nº de poços, capacidade da planta, etc.
 - Análise de dados indica uma relação linear para I_D(B) ótimo, dado B. Além disso, I_D segue um MGB através da variável υ(t):

$$I_D(B, t) = v(t) [CF + CV . B]$$

- Onde CF (custo fixo) e CV (custo variável) são constantes.
- Devido à homogeneidade de grau zero (vale para MGBs) iremos usar a curva de gatilhos normalizados V/I_D. Isso evitará que a cada sorteio de B tenhamos de recalcular os gatilhos.

Alternativa Ótima de Aprendizagem

 Proposição 9: incluindo a alternativa k = 0 (= não investir em informação), a melhor alternativa de aprendizagem é:

$$k^* = \underset{k \in \{0, 1, 2, \dots, K\}}{arg max} W_k$$

 Onde W_k é o valor da reserva não-desenvolvida (OR) usando a alt. k, que tem custo C_k e tempo t_k de aprendizagem, dado por:

$$W_{k} = -C_{k} + E \left[\max_{t^{*} \in [t_{k}, T]} \left\{ E^{Q} \left[e^{-r t^{*}} \left(\tilde{q} \tilde{B} P(t) - I_{D}(\tilde{B}, t) \right) \right] \right\} \mid S_{k} \right]$$

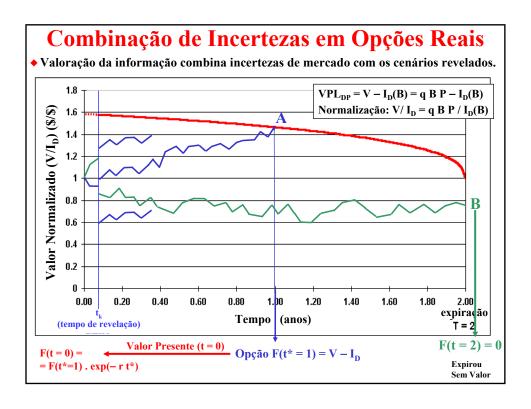
Onde E^Q significa medida neutra ao risco e t* é o tempo ótimo de exercício:

$$\mathbf{t}^* = \inf \left\{ \mathbf{t} \in [\mathbf{t}_k, T]: \frac{q \mathbf{B} \mathbf{P}(\mathbf{t})}{\mathbf{I}_{D}(\mathbf{B}, \mathbf{t})} \ge \left(\frac{\mathbf{V}}{\mathbf{I}_{D}} \right)^* (\mathbf{t}) \right\}$$

• Sendo que W_k pode ser aproximado de uma forma simples, através de simulação de Monte Carlo, usando distribuições de revelações para q e B e um fator para trabalhar como se q e B fossem independentes:

$$W_k = -C_k + E\left[\max_{t^* \in [t_k, T]} \left\{ E^{Q}\left[e^{-r t^*} \left(E[q|S_k] E[B|S_k] P(t) - I_D(E[B|S_k], t)\right)\right] \right\}\right] \psi_{F|S_k}$$

1′



Opção de Aprendizagem: Exemplo Numérico

- Parâmetros gerais: P(t = 0) = 20 \$/bbl; r = 6% p.a.; δ = 6
 % p.a.; σ = 20 % p.a.; I_D (MM\$) = 310 + (2,1 x E[B])
- ◆ Distribuições a priori de q e B: B ~ Triang(300; 600; 900) em MM de bbl; e q ~ Triang(8%; 15%; 22%)
- Alternativa 1: perfurar um poço vertical. $C_1 = US$ \$ 10 MM e leva $t_1 = 45$ dias para aprender. $\eta^2(q \mid S_1) = 40\%$ e $\eta^2(B \mid S_1) = 50\%$.
- Alternativa 2: perfurar um poço horizontal. $C_2 = US$ \$ 15 MM e $t_2 = 60$ dias para aprender. $\eta^2(q \mid S_2) = 60\%$ e $\eta^2(B \mid S_2) = 75\%$.

Alternativas	S_1	S_2
(1) VPL sem incerteza técnica	230	230
(2) OR sem incerteza técnica	302,1	302,1
(3) VPL com incerteza técnica	178,5	178,3
(4) OR com incerteza técnica mas sem informação	264,2	263,7
(5) OR com incerteza técnica e com informação (Wk)	285,2	298,8
(6) Valor dinâmico líquido da informação [(5) - (4)]	21,0	35,1

Momento Ótimo de Investimento em Informação

- No exemplo anterior foi considerado que o investimento em informação é feito em t = 0. Adiar o aprendizado tem valor?
 - Como o custo de adquirir informação (C_k) é ~100 vezes menor que o custo de desenvolvimento I_D , a opção de adiar C_k não é tão valiosa.
 - O problema pode ser resolvido de forma similar, mas testanto o momento ótimo t^{**} de investir em informação na fórmula de W_k :

$$W_{k} = \max_{t^{**} \in [0, T - t_{k}]} E \left[e^{-r \cdot t^{**}} \left[E \left[\max_{t^{*} \in [t^{**} + t_{k}, T]} \left\{ E^{Q} \left[e^{-r \cdot (t^{*} - t^{**})} \left(\tilde{q} \cdot \tilde{B} \cdot P(t) - I_{D} \left(\tilde{B}, t \right) \right) \right] \right\} | S_{k} \right] - C_{k} \right] \right]$$

 No exemplo numérico anterior, o imediato investimento seria melhor para as duas alternativas de investimento em informação

Alternativas	S_1	S ₂
OR sem informação (sem aprendizagem)	267,9	263,3
OR com aprendizagem imediata	298,4	307,0
OR com aprendizagem adiada de 6 meses	293,9	305,9
OR com aprendizagem adiada de 1 ano	291,2	299,7

Medida de Aprendizagem η^2 e Propriedades

A medida de aprendizagem proposta é a redução percentual esperada de variância η², que também é a variância normalizada da distribuição de revelações de X dado o sinal S:

$$\eta^2(X\mid S) \ = \ \frac{Var[X] \, - \, E[\, Var[\,X\mid S\,\,]\,\,]}{Var[X]} \quad = \quad \frac{Var[\,E[\,X\mid S\,]\,\,]}{Var[X]} \quad = \quad \frac{Var[\,R_X]}{Var[X]}$$

- Proposição 6: propriedades da medida de aprendizagem η²
 - a) $\eta^2(X \mid S)$ existe sempre que Var[X] > 0 (não-trivial) e Var[X] for finito;
 - b) Essa medida é, em geral, assimétrica, $\eta^2(X \mid S) \neq \eta^2(S \mid X)$;
 - c) Ela é definida no intervalo unitário, i. é, $0 \le \eta^2 \le 1$;
 - d) Se X e S são *independentes* $\Rightarrow \eta^2(X \mid S) = \eta^2(S \mid X) = 0$; em adição, vale a expressão: $\eta^2(X \mid S) = 0 \Leftrightarrow Var[R_x(S)] = 0$;
 - e) $\eta^2(X \mid S) = 1 \Leftrightarrow \underline{\text{dependência funcional}}, i. \acute{e}, \exists v.a. g(S), \text{ tal que } X = g(S);$
 - f) Ela é <u>invariante sob transformações lineares de X</u>, i. é, se a e b são números reais, com a \neq 0, η^2 (a X + b | S) = η^2 (X | S);
 - g) Ela é <u>invariante sob transformações lineares e não-lineares de S</u> se g(S) for uma função 1-1, i. é, $\eta^2(X \mid g(S)) = \eta^2(X \mid S)$, se g(s) é função 1-1;
 - h) Se as v.a. $Z_1, Z_2,...$ são iid e $S = Z_1 + ... + Z_j$ e $X = Z_1 + ... + Z_{j+k} = \eta^2(X \mid S) = \frac{j}{j+k}$

Axiomas para Medidas de Aprendizagem

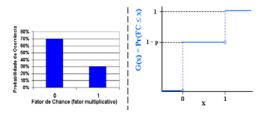
- ◆ Inspirado nos axiomas para medidas de dependência entre v.a., sejam os axiomas para uma medida de aprendizagem M(X | S):
 - A. M(X | S) deve existir pelo menos para v.a. não triviais e incerteza finita;
 - B. M(X | S) deve, em geral, ser <u>assimétrica</u> p/ capturar eventuais assimetrias de aprendizagem entre X e S (X pode aprender muito com S, mas não vice-versa);
 - C. $M(X \mid S)$ deve ser <u>normalizada no intervalo unitário</u>, i. é, $0 \le M(X \mid S) \le 1$;
 - **D.** $M(X \mid S) = 0 \Rightarrow \underline{nao \ haver \ aprendizagem}$ (incluindo se X e S independentes);
 - E. Se a medida é máxima, $M(X \mid S) = 1 \Rightarrow \underbrace{aprendizagem é máxima}_{dependência funcional}$ a medida deve ser máxima: $X = f(S) \Rightarrow M(X \mid S) = 1$;
 - F. $M(X \mid S)$ deve ser invariante a mudanças de escala da v.a. X ou da v.a. S, i. \acute{e} , $M(a \mid X + b \mid S) = M(X \mid S)$ e $M(X \mid S) = M(X \mid a \mid S + b)$;
 - G. M(X | S) deve ser <u>prática</u>, i. é, fácil interpretação e fácil de ser quantificada;
 - H. $M(X \mid S)$ deve ser <u>aditiva</u>, i. é, caso S possa ser decomposto numa soma de n fatores <u>independentes</u> $S_1 + S_2 + ... + S_n$, que dê uma <u>aprendizagem máxima</u>, então: $M(X \mid S_1) + M(X \mid S_2) + ... + M(X \mid S_n) = 1$
- Teorema 2: a medida de aprendizagem η² atende aos axiomas
 - Em geral de forma ainda mais forte. Os 2 últimos axiomas serão vistos a seguir.

Medida η² e Decomposição da Aprendizagem

- O axioma G pede que uma medida de aprendizagem seja prática, i. é, de fácil interpretação e fácil de ser quantificada
 - A medida η² é intuitiva, pois é interpretada como uma redução esperada da incerteza (medida pela % da variância inicial);
 - A medida η² é fácil de ser estimada por métodos nãoparamétricos (pois envolve só variâncias, não o tipo de distribuição) e por métodos paramétricos populares, como a regressão (linear ou não) e ANOVA
 - ⇒ Se a regressão linear é correta (ex.: X e S v.a. normais) então η^2 é igual ao quadrado do coeficiente de correlação ρ^2 . Se uma regressão nãolinear é a correta, então η^2 é igual ao coeficiente da regressão R^2 .
 - → ANOVA: η² é calculada diretamente (é uma razão de soma de quadrados)
- Axioma H: o <u>Teorema 3</u> mostra que a aditividade é ainda mais forte do que o exigido, pois vale para funções reais quaisquer
 - Sejam S_1, S_2, \ldots, S_n , v.a. independentes e X uma soma de funções reais quaisquer desses sinais, $X = f(S_1) + g(S_2) + \ldots + h(S_n)$, então: $\eta^2(X \mid S_1, \ldots, S_n) = \eta^2(X \mid S_1) + \eta^2(X \mid S_2) + \ldots + \eta^2(X \mid S_n) = 1$ (decomposição da aprendizagem)

Fator de Chance e Distribuição de Bernoulli

- ◆ Foi visto que o fator de chance dá a probabilidade de sucesso de um prospecto e é usada no cálculo: VME = -I_w + FC . VPL
 - FC tem distribuição de Bernoulli, um parâmetro e dois cenários (0 e 1)



- FC em petróleo é função (produto) de seis fatores: probabilidades de existência de rocha geradora, migração, rocha reservatório, trapa geométrica, retenção (sêlo + preservação) e sincronismo geológico.
- ◆ Aqui a v.a. técnica de interesse é o FC de um prospecto e o sinal S é o FC de outro prospecto, também v.a. de Bernoulli (0 ou 1)
 - Se o sinal $S_k = 1$, então revisa p/ FC^+ , se $S_k = 0$, então revisa p/ FC^-
 - Logo, para estudar o poder de revelação de um sinal em relação a FC é necessário estudar a distribuição bivariada de Bernoulli

Valores Revisados de FC e Medida η²

- Teorema 4: dado as v.a. FC ~ Be(FC₀) e S ~ Be(q), e dado η^2 ,
 - As <u>probabilidades de sucesso reveladas</u> por S, i. é, FC + e FC são:

$$FC^{+}=FC_{0} + \sqrt{\frac{1-q}{q}} \sqrt{FC_{0} (1-FC_{0})} \sqrt{\eta^{2} (FC \mid S)}$$

$$FC^{-} = FC_{0} - \sqrt{\frac{q}{1-q}} \sqrt{FC_{0} (1 - FC_{0})} \sqrt{\eta^{2} (FC \mid S)}$$

• η² é <u>igual ao quadrado do coeficiente de correlação</u> ρ:

$$\eta^2(FC \mid S) \, = \, \rho^2(FC, S) \, = \, \frac{(p_{11} - FC_0 \, q)^2}{FC_0 \, (1 - FC_0) \, q \, (1 - q)}$$

- Aqui η^2 é simétrica: X e S ~ Bernoulli $\Rightarrow \eta^2(FC \mid S) = \eta^2(S \mid FC)$
- η²(FC | S) = 0 ⇔ FC e S são independentes
- Os <u>limites de Fréchet-Hoeffding</u> p/ existir a dist. bivar. de Bernoulli:

$$0 \leq \eta^2 \leq Max \begin{cases} Max \left\{ \frac{FC_0 \ q}{(1 - FC_0) \ (1 - q)} \ , \ \frac{(1 - FC_0) \ (1 - q)}{FC_0 \ q} \right\} \ , \\ \frac{Min\{FC_0 \ , \ q\} \ (1 - Max\{FC_0 \ , \ q\})}{Max\{FC_0 \ , \ q\} \ (1 - Min\{FC_0 \ , \ q\})} \end{cases}$$

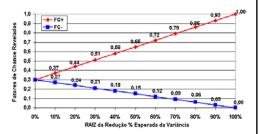
Distribuições de Bernoulli Intercambiáveis

- Uma simplificação importante é quando as v.a. $FC \sim Be(FC_0)$ e $S \sim Be(q)$ são *intercambiáveis* (aqui $p_{01} = p_{10}$). Proposição 7:
 - FC e S intercambiáveis \Leftrightarrow FC₀ = q
 - O limite de Fréchet-Hoeffding deixa de ser restrição: $0 \le \eta^2 \le 1$
 - As probabilidades de sucesso FC + e FC reveladas pelo sinal S são:

$$FC^{+} = FC_{0} + (1 - FC_{0}) \eta$$

$$FC^{-} = FC_{0} - FC_{0} \eta$$

$$\Rightarrow FC^{+} - FC^{-} = \eta$$

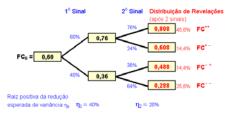


 Lema 7. A <u>condição necessária</u> para haver revelação total (ou aprendizagem máxima) é que FC e S sejam intercambiáveis:

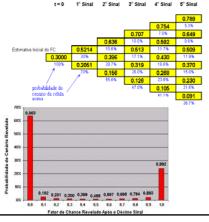
$$\eta^2(FC \mid S) = 1 \implies FC \in S \text{ v.a. intercambiáveis}$$

Processos de Revelação de Bernoulli

- ◆ <u>Processo de revelação de Bernoulli</u> é uma sequência de distribuições bivariadas de Bernoulli gerada pela interação de uma sequência de sinais S com o FC do prospecto de interesse.
 - Se existe um sequência de sinais (poços correlacionados sendo perfurados, sísmica) então existe um processo de revelação do FC
 - → O processo pode ser totalmente convergente ou não, recombinante ou não



 Como esses processos podem convergir para uma distribuição com apenas dois cenários (Teorema 1 a)?



MATERIAL ANEXO

Os anexos nos materiais do curso contém slides que reforçam os conceitos teóricos e apresentam exemplos adicionais que não serão discutidos em sala de aula, mas que podem ser úteis para um melhor entendimento de conceitos apresentados.

Valor da Informação: Método Clássico

- ◆ A abordagem clássica de VOI usa árvores de decisão e a abordagem Bayesiana tradicional (Lei de Bayes).
 - É um dos temas clássicos da escola de análise de decisão.
- Veremos que existem várias limitações nessa abordagem, principalmente em problemas de informação imperfeita:
 - O número de ramos da árvore "explode" com o número de cenários considerados. Após um sinal imperfeito, veremos que o nº de ramos é pelo menos da ordem de n², onde n é o número de cenários da distribuição a priori.
 - No método Bayesiano tradicional, se precisa estimar probabilidades inversas de cada um desses n² ramos, o que é muito difícil na prática. Essas probabilidades devem ainda obedecer regras complexas de consistência.
- ◆ Ex.: problema clássico de VOI (Raiffa, 1968, p.241): perfurar logo o poço ou fazer antes um *teste sísmico*?

