ELE2005: Análise Estratégica de Investimentos e de Decisões com Teoria dos Jogos e Jogos de Opções Reais.

Segunda Prova (P2)

11/12/2007

OBS:

- 1) A prova é SEM CONSULTA. A nota da prova é = mínimo {10; pontuação da P2 + crédito da P1}
- 2) Múltipla escolha: <u>responder na tabela da última folha</u> (escrever a letra escolhida). Só entregar essa folha e o papel almaço (ambos com os nomes!)
- 3) <u>Siglas/notação usadas</u>: MGB = movimento geométrico Browniano; OR = opções reais ou teoria das opções reais; r = taxa de juros livre de risco; EDO = equação diferencial ordinária; P = preço; $\beta_1 = raiz$ positiva da equação quadrática fundamental da EDO homogênea; EN = equilíbrio de Nash; ENPS = EN perfeito em subjogos. $\delta = taxa$ de conveniência da commodity ou taxa de dividendo.
- 4) As <u>figuras</u> mencionadas na prova estão no final, antes da folha de respostas.
- 5) Formulário:
- * Lema de Itô para F(X) (subscritos denotam derivadas parciais): $dF = \frac{1}{2} F_{XX} (dX)^2 + F_X dX$
- * Equação do movimento geométrico Browniano (MGB) para X: $dX = \alpha X dt + \sigma X dz$.
- * Outros: $(dz)^2 = dt$; $\delta = dividend yield = \mu \alpha$, onde μ é a taxa ajustada ao risco de X (ou taxa de retorno esperado total de X). Retorno total = ganho de capital + dividendos.
- * Valores esperados úteis, onde T* = inf $\{t \ge 0; X \ge X^*\}$:

$$\mathbf{E} \left[e^{-\mathbf{r} \cdot \mathbf{T}^{+}} \right] = \left(\frac{\mathbf{X}}{\mathbf{X}^{+}} \right)^{\beta_{1}} \qquad \qquad \mathbf{E} \left[\int_{0}^{\mathbf{T}^{+}} e^{-\mathbf{r} \cdot t} \mathbf{X}(t) \ dt \right] = \frac{\mathbf{X}}{\delta} \left[1 - \left(\frac{\mathbf{X}}{\mathbf{X}^{+}} \right)^{\beta_{1} - 1} \right]$$

* Lucros em monopólio (M) e em duopólio de Cournot para firmas de alto custo (h) e baixo custo (l), com curva de demanda inversa linear dada por $P = a - b Q_T$, com a > 0, b > 0, P > 0:

$$\pi_{M_i} = \frac{(a - c_i)^2}{4 b} \mid \pi_1 = \frac{(a - 2c_1 + c_h)^2}{9 b} \mid \pi_h = \frac{(a - 2c_h + c_1)^2}{9 b}$$

Parte 1 – Demonstração – 6 pontos

Você tem <u>duas opções de demonstração</u>, A e B, e <u>deve escolher apenas uma</u> das duas. A opção A é a demonstração completa do duopólio assimétrico. A opção B é a da competição perfeita mais uma pequena parte do caso de duopólio assimétrico. Você deverá assinalar qual das duas demonstrações você optou em fazer e fazê-la na folha de papel almaço (escreva o nome!). A seguir os enunciados das duas opções de demonstração.

A) Demonstração do Duopólio Assimétrico sob Incerteza (6 pontos).

Firmas são não homogêneas (assimétricas), pois uma tem um custo operacional unitário mais baixo (c_l) do que a outra firma (c_h) . As firmas planejam investir num novo mercado num país estrangeiro. A demanda é determinística em moeda estrangeira, mas a taxa de câmbio X(t) é estocástica e segue um MGB. Logo, embora o fluxo de lucro π_i em caso de exercício da firma i seja determinístico em moeda estrangeira, o fluxo de lucro em moeda *doméstica* da firma $i = X(t) \cdot \pi_i$, é estocástico.

Calcular o valor do seguidor (F_i) , o gatilho do seguidor (X^*_{Fi}) , o valor do líder (L_i) , escrever resumidamente como se obtém o gatilho do líder (X^*_{Li}) e escrever o par de estratégias que constituem um dos ENPS (basta um caso de ENPS).

OBS: Podem calcular supondo que uma firma é líder (ex. a firma l) e a outra firma é seguidora (ex.: firma h), já que na situação inversa basta trocar h por l e vice-versa. Mas especifiquem "l" e "h".

- * Mais opções: <u>Podem usar tanto o método integral como o método diferencial</u> (ou misto: método integral para alguns valores e método diferencial para outros).
- * Quem usar o método diferencial (contingent claims: escreve as equações de retorno de um portfólio que pode ser livre de risco, usa o lema de Itô, etc.), pode deduzir a EDO apenas uma vez (por ex., para o seguidor) e depois escrever a outra EDO diretamente (mas atenção para a diferença no termo de cash-flow da EDO). Isso evita trabalho repetitivo quase igual com notação diferente e apenas um termo realmente diferente (o termo de "cash-flow"). Entretanto, se você não se sentir muito seguro(a), pode deduzir toda a EDO novamente. Mas é claro que as condições de contorno das EDOs são diferentes e têm de ser especificadas, assim como a solução.
- * Quem usar o método integral (soma de integrais mais a soma ou diminuição do investimento ou do valor presente do mesmo), não esquecer de colocar os limites de integração (são fundamentais!).

B) Demonstração da Competição Perfeita sob Incerteza (5 pontos) mais pequena parte do caso de Duopólio Assimétrico sob Incerteza (1 ponto). Total de 6 pontos.

B.1) <u>Competição Perfeita sob Incerteza</u> (5 pontos): Seja um grande número de firmas homogêneas que podem entrar num mercado em competição perfeita. A entrada no mercado é livre, mas paga um investimento I. O preço do produto P é dado pela curva de demanda inversa P = Y D(Q), onde Y é um fator de choque estocástico da demanda e segue um MGB e Q é a produção total da indústria. Q também é o número de firmas ativas, pois cada firma produz uma unidade e o custo operacional é zero. O valor de uma firma *ativa* (produzindo uma unidade em perpetuidade) no mercado é V(P).

Determine a equação do gatilho P* da competição perfeita, onde as outras firmas (inativas) entram no mercado, i. é, pagam I para se tornarem ativas. Ache também o **valor da firma ativa V(P)**. Para tal mostre como chegar na chegar na EDO de V(P) pelo método dos ativos contingentes, escreva as soluções geral e particular da EDO e as condições de contorno e/ou equilíbrio. Dica para achar a EDO: escreva as equações de retorno do portfólio (contendo V e n unidades de P), aplique o lema de Itô para expandir dV e substitua n para que o portfólio tenha retorno livre de risco.

B.2) <u>Pequena Parte do Caso de Duopólio Assimétrico sob Incerteza</u> (1 ponto): Veja o enunciado da demonstração A. Escreva apenas a **equação integral** (soma de integrais e soma ou diminuição da constante I) **do valor do líder L(X)** para o caso da firma de baixo custo (l) ser a líder e **explique** o que significa cada integral (ex.: primeira integral representa a fase em que a firma está sozinha no mercado, etc.). Não esquecer de colocar os limites de integração (são fundamentais!).

Parte 2 – Questões Conceituais – 5 pontos

1) Assinale a afirmativa **CERTA**. Vale 0,5 ponto:

- a) A *teoria das opções reais tradicional* modela a presença de competidores de forma endógena, pois coloca considerações de equilíbrio nas condições de contorno da EDO.
- b) A *teoria dos jogos tradicional* considera o valor da flexibilidade sob incerteza, mas usando o conceito de flexibilidade de Nash-Pareto e não de forma Markoviana como faz as OR.
- c) A teoria das opções reais e a teoria dos jogos são teorias substitutas ou concorrentes, pois a primeira modela o valor da flexibilidade sob incerteza e a segunda modela a incerteza do tipo do jogador quando ele tem flexibilidade de escolher seu tipo.
- d) A *teoria dos jogos de opções reais* geralmente quantifica a oportunidade de investimento de uma firma (valor da OR) dado que a presença de outra firma pode afetar o valor dessa OR.

2) Assinale a afirmativa **ERRADA**. Vale 0,5 ponto:

a) A análise com ferramentas típicas de opções reais, tais como processos estocásticos e otimização sob incerteza, permite estender a *teoria microeconômica* tradicional para uma *realidade dinâmica* de mercado, com incertezas de mercado e flexibilidades (OR).

- b) No caso clássico de OR, o valor da firma é uma *função côncava* da variável estocástica (ex.: preços), enquanto que em competição perfeita o valor da firma é uma *função convexa* da variável estocástica (no caso, da demanda).
- c) Uma firma produz em perpetuidade uma unidade de produto de preço corrente P₀, que segue um MGB. O custo operacional é igual a zero. No caso de *competição perfeita*, o *valor da firma* é igual a P₀/δ A, onde A > 0 é o valor presente das perdas competitivas.
- d) No modelo de competição perfeita sob incerteza com firmas homogêneas, o gatilho P* é uma *barreira refletora*, pois as firmas irão exercer suas opções de entrada no mercado e esse aumento da oferta não permitirá que os preços subam mais que P*.
- 3) Assinale a afirmativa **CERTA** no modelo de *competição perfeita*, com preços P = Y D(Q), onde D(Q) é a função demanda inversa e Y é o fator estocástico (choque) da demanda. Vale 0,5 ponto:
 - a) Enquanto o choque da demanda Y segue um MGB sem restrição, o preço P segue um MGB com restrição devido a barreira P*, pois D(Q) varia com a entrada de novas firmas em P*.
 - b) No ponto de entrada das firmas, em Y*, o grande aumento da oferta faz derrubar a demanda e a queda de Y faz a oferta recuar, num efeito cascata que aumenta os preços.
 - c) A estratégia de entrada simultânea das firmas no gatilho é equilíbrio de Markov, mas não é ENPS, pois a estratégia ótima independe do estado da natureza (valor corrente do preço).
 - d) Num equilíbrio em expectativas racionais, cada firma considera um processo estocástico diferente, com diferentes volatilidades. Mas as curvas de valor esperado são iguais.
- 4) Assinale a afirmativa **ERRADA**. Vale 0,5 ponto:
 - a) No modelo de competição perfeita sob incerteza, diz-se que a *miopia* é *ótima* devido ao fato do *valor da firma* em competição perfeita ser igual ao valor da firma quando ela não tem competidor.
 - b) A caracterização de *miopia ótima* significa que cada firma pode agir otimamente (*escolha de P* para entrar*) como se fosse a última firma a entrar no mercado, ignorando a competição.
 - c) No modelo de *competição perfeita*, um *aumento da incerteza* aumenta o valor do gatilho, pois aumenta o efeito do valor presente das perdas competitivas que erode o valor esperado da firma e assim aumenta o gatilho requerido para uma firma racional entrar.
 - d) O gatilho da competição perfeita coincide com o gatilho tradicional de uma OR sem competição (miopia ótima), apesar dos valores das firmas serem diferentes nos dois casos.

5) Assinale a afirmativa **ERRADA**. Vale 0,5 ponto:

- a) Vimos que no caso de jogos de parada ótima com estratégias simples de gatilho, em geral se pode resolver o jogo usando tanto o método diferencial como o método integral.
- b) No gatilho de exercício ótimo de uma firma, ela está indiferente entre exercer sua opção e não exercer (esperar). A condição de continuidade diz que os valores de exercer e de não exercer a opção, são iguais nesse gatilho.
- c) No método diferencial para resolver duopólios (simétricos ou não) sob incerteza, as considerações de *equilíbrio ótimo* são incluídas *na EDO* e não nas condições de contorno.
- d) No duopólio simétrico sob incerteza, as *estratégias puras* são *tempos de parada*. Por ex., (t*_L; t*_F) onde os tempos de parada t*_L e t*_F são os primeiros instantes em que a variável estocástica atinge os gatilhos de entrada do líder (L) e do seguidor (F), respectivamente.

6) Assinale a afirmativa **ERRADA**. Vale 0,5 pontos:

- a) No modelo de duopólio simétrico, se o estado inicial da demanda Y₀ for menor que o gatilho do líder a probabilidade de cada firma ser líder é de 50%, mas se Y₀ estiver entre os gatilhos do líder e do seguidor, então existe uma probabilidade > 0 de exercício simultâneo.
- b) No modelo de duopólio *assimétrico*, a *vantagem competitiva* de uma firma *nunca* é grande o suficiente para que ela possa exercer a opção ignorando a competição, como um monopolista.
- c) No modelo de duopólio *simétrico*, o valor de se *tornar líder* L(Y) pode ser visto como o valor presente esperado do lucro na fase monopolista (do instante de sua entrada até t*_F) mais o valor presente esperado do lucro na fase duopólio (de t*_F até infinito) menos o investimento.
- d) No modelo de duopólio *assimétrico*, podem existir *pelo menos dois ENPS* em estratégias puras, um com a firma de alto custo sendo líder e a de baixo custo como seguidora e o outro invertendo os papéis das firmas.

7) Assinale a afirmativa **CERTA**. Veja a FIGURA 1 para responder. Vale 0,5 pontos:

- a) O ponto A indica a entrada do líder, o ponto B a entrada do seguidor, a curva C é do valor do líder, a curva D é do valor em exercício simultâneo e a curva E é do valor do seguidor.
- b) O ponto A indica a entrada do líder, o ponto B a entrada do seguidor, a curva C é do valor do seguidor, a curva D é do valor do líder e a curva E é um possível valor em colusão tácita, onde as firmas só exercem suas opções no ponto B.

- c) O ponto A indica a entrada do seguidor, o ponto B a entrada do líder, a curva C é do valor do líder, a curva D é do valor do seguidor e a curva E é do valor em exercício simultâneo.
- d) O ponto A indica a entrada do líder, o ponto B a entrada do seguidor, a curva C é do valor do seguidor, a curva D é do valor do líder e a curva E é do valor em exercício simultâneo.
- 8) Assinale a afirmativa **CERTA**. Veja as FIGURAS 2 e 3 para responder, que inclui o valor da firma numa das infinitas colusões tácitas possíveis. Vale 0,5 ponto:
 - a) A Figura 2 mostra um caso em que a colusão tácita é ENPS. A Figura 3 mostra um caso em que a colusão tácita é ENPS desde que o estado *inicial* da demanda não pertença à região A.
 - b) A Figura 2 mostra uma colusão tácita que é ENPS. Aqui a colusão é única, pois para ser ENPS é necessário que seja Pareto ótimo. Na Figura 3, a colusão pode ou não ser ENPS.
 - c) Nos dois casos (nas duas figuras) a colusão tácita não é ENPS, pois o jogo não é repetido e assim existe a ameaça crível de traição com um dos jogadores se tornando líder.
 - d) A Figura 3 mostra que a colusão tácita não é ENPS, mesmo que Y esteja abaixo do limite inferior da região A, pois antes de atingir o gatilho de colusão, a demanda passará pela região A e haverão subjogos em que o valor em colusão será menor do que o valor de ser líder.
- 9) Assinale a afirmativa **CERTA**. Veja a FIGURA 4 para responder, relativa ao modelo de duopólio assimétrico sob incerteza (uma firma é de alto custo e a outra é de baixo custo). Vale 0,5 ponto:
 - a) A curva A indica o valor de líder da firma de baixo custo, a curva B o valor de líder da firma de alto custo, a curva C o valor em exercício simultâneo da firma de baixo custo, a curva D o valor em exercício simultâneo da firma de alto custo e as curvas E e F os valores das firmas como seguidoras.
 - b) A curva A indica o valor de líder da firma de alto custo, a curva B o valor de líder da firma de baixo custo, a curva C o valor de seguidor da firma de alto custo, a curva D o valor de seguidor da firma de baixo custo e as curvas E e F os valores das firmas em exercícios simultâneos.
 - c) A curva A indica o valor de líder da firma de alto custo, a curva B o valor de líder da firma de baixo custo, a curva C o valor em exercício simultâneo da firma de alto custo, a curva D o valor em exercício simultâneo da firma de baixo custo e as curvas E e F os valores das firmas como seguidoras.

- d) A curva A indica o valor de líder da firma de baixo custo, a curva B o valor de líder da firma de alto custo, a curva C o valor de seguidor da firma de baixo custo, a curva D o valor de seguidor da firma de alto custo e as curvas E e F os valores das firmas em exercícios simultâneos.
- 10) Assinale a afirmativa **CERTA**. Veja a FIGURA 5 para responder, que é um "zoom" da figura 4 anterior. Os pontos B e C são para o mesmo valor de X, mas para firmas diferentes. Vale 0,5 ponto:
 - a) O ponto A indica a entrada ótima da firma de baixo custo como líder e o ponto C indica o ponto ótimo de entrada da firma de alto custo como líder (se a rival não tiver entrado antes).
 - b) O ponto A indica a entrada ótima da firma de alto custo como líder e o ponto C indica o ponto ótimo de entrada da firma de baixo custo como líder (se a rival não tiver entrado antes).
 - c) O ponto A indica apenas o ponto de indiferença da firma de baixo custo em ser líder ou seguidora, mas o ponto ótimo de entrada como líder é o ponto B para a firma de baixo custo e o ponto C para a firma de alto custo (se a rival não tiver entrado antes).
 - d) O ponto A indica apenas o ponto de indiferença da firma de alto custo em ser líder ou seguidor, mas o ponto ótimo de entrada como líder é o ponto B para a firma de alto custo e o ponto C para a firma de baixo custo (se a rival não tiver entrado antes).

FIGURAS MENCIONADAS

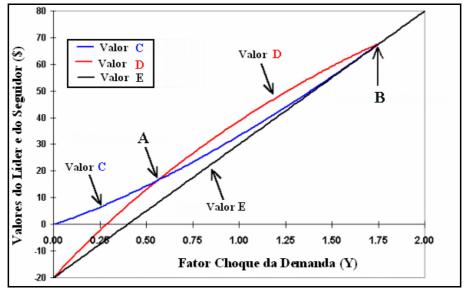


Figura 1 – Duopólio Simétrico Sob Incerteza

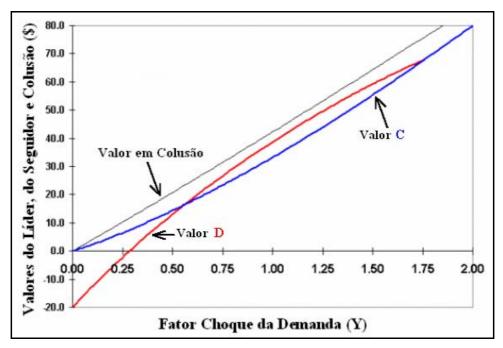


Figura 2 - Duopólio Simétrico Sob Incerteza e Colusão Tácita

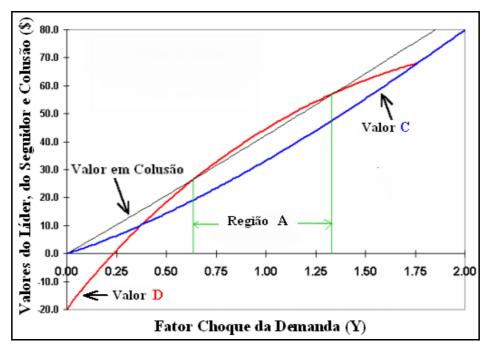


Figura 3 - Duopólio Simétrico Sob Incerteza e Colusão Tácita

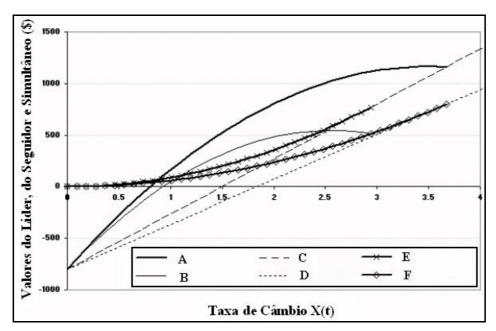
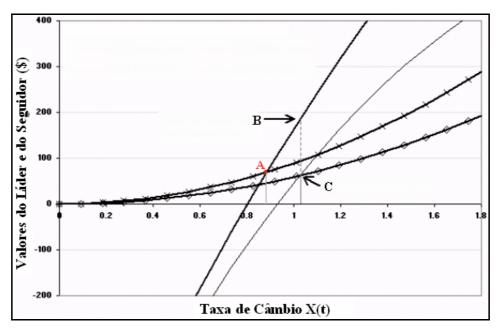



Figura 4 – Duopólio Assimétrico Sob Incerteza

 ${\bf Figura~5-Duop\'olio~Assim\'etrico~Sob~Incerteza:~Zoom~da~Figura~3.}$

FOLHA DE RESPOSTAS DA MÚLTIPLA ESCOLHA

P2 de ELE2005 – 11/12/2007

Nome do aluno ou da aluna:

Questão	Resposta (letra)
1	D
2	В
3	A
4	A
5	С
6	В
7	D
8	D
9	A
10	С