Monte Carlo Simulation of Stochastic
Processes

Last update: January 10th, 2004.

In this section is presented the steps to perform the simulation of the main stochastic processes
used in real options applications, that is the Geometric Brownian Motion, the Mean Reversion
Process and the combined process of Mean-Reversion with Jumps.

For all cases I present both simulations the risk-neutral and the real one. Risk-neutral
simulations are used for derivatives pricing, whereas real simulations are used for value at risk,
hedging and, for real options applications, is useful for example to find the probability of
exercise the option and the expected time to wait before the option exercise (see the new Timing
spreadsheet).

See the FAQ 4 for a discussion of risk-neutral versus real simulations.

This section includes the topics:

©Monte Carlo Simulation of Geometric Brownian Motion

“Monte Carlo Simulation of Mean Reversion (Model 1)

@Complement: Discretization Accuracy of the Mean-Reversion Stochastic Process. NEW!
... Download an Excel spreadsheet that simulates this mean-reversion model and discusses the

discretization accuracy. NEW!

“Monte Carlo Simulation of Mean Reversion (Model 2).
@A More Practical Approach to Mean Reversion Model 2. NEW! November 2003 insertion .

$Monte Carlo Simulation of Mean Reversion with Jumps
... Download a spreadsheet simulating the mean-reversion + jumps sample paths. NEW!

Monte Carlo Simulation of Geometric Brownian Motion

Consider that the price P of a commodity follows a Geometric Brownian Motion, which is given
by the following stochastic equation:

dP=aPdt+cPdz

Where dz = Wiener increment = € dt*’, € is the standard normal distribution; o is the drift (or
capital gain rate); and © is the volatility of P.

By using the equation of fotal investment return b= o+ 8, where [ is also the risk-adjusted



discount rate for P; and 0 is the dividend yield (or convenience yield in case of commodities).
We can rewrite the stochastic equation as:

dP=(u-9%)Pdt+coPdz

For the risk-neutral version of this equation, just replace the risk-adjusted discount rate [l by the
risk-free interest rate r to obtain the risk-neutral stochastic equation:

dP=(r-8)Pdt+cPdz

Using a logarithm transformation and applying the It6's Lemma, we can reach the equations for
the prices simulation in both formats, real and risk-neutral.

For more technical details, see the page on Geometric Brownian Motion, from the Stochastic
Processes section.

The real simulation of a GBM uses the real drift a. The price Py at the future instant t is given
by:
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The simulation of the real prices using the above equation is done by sampling the standard
Normal distribution N(0, 1) and obtaining the correspondent values for P;. These values of P can
be used to calculate the (real) values of the project V by means of some equation V(P) or
combined even with other uncertain variables in order to obtain the real value of V.

Remember, with the real drift simulation of the underlying asset (P), the required discount rate is
the risk-adjusted one |. Real simulations are used mainly for the calculus of the probability of
option exercise and for the expected time of option exercise (given conditional to have occur at
least one exercise in the simulation), see the new Timing spreadsheet. In financial applications,
the real simulation is used for VaR (value at Risk) estimation.

However, for derivatives in general is required other type of simulation, the risk-neutral one,
because the risk-adjusted discount rate for the derivative F(P) in general is not the same 1 used
for P.

The risk-neutral simulation of a GBM uses the risk-neutral drift o’ =r— & . The price at t is:
P,=P,expf (r—5-056) At + o N(0, 1) Jat }

The simulation of the risk-neutral prices using the above equation is performed by sampling the
standard Normal distribution N(0, 1) and obtaining the correspondent values for P;. The risk-
neutral simulation is used mainly for the derivatives valuation in complete markets. For
incomplete markets, is possible use either the risk-neutral one (but need to select a martingale
measure from several or to estimate the risk-premium in this market) or the real simulation one
with an exogenous risk-adjusted discount rate (dynamic programming), see FAQ 5.

However, for both the estimation of the probability of option exercise and the expected time of
option exercise, the correct is the real simulation and not the risk-neutral one.

One important feature of the above discrete-time equations is that the discretization from the



continuous-time model is exact. In other words, you don't need to use small time increments At
in order to get a good approximation. You can use any At that the simulation equation is valid
(check out this affirmative by evaluating an European call option with time to maturity of one
year, for example, by risk-neutral simulation of the underlying asset only at the expiration, and
conferring with the exact Black-Scholes formula result).

Monte Carlo Simulation of Mean Reversion (Model 1)

Initially consider the following Arithmetic Ornstein-Uhlenbeck process for a stochastic variable

x(t):
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This means that there is a reversion force over the variable x pulling towards an equilibrium
level %, like a spring force.
The velocity of the reversion process is given by the parameter n.

This stochastic differential equation is explicitly solvable (see Kloeden & Platen, 1992, topic 4.4,
eq.4.2) and has the following solution in terms of stochastic integral (Itd's integral):

x(T)=x(0)e 1T + (1-e1T)X + cen! Ee”: z(2)

The variable x(T) has Normal distribution with the following expressions for the mean and
variance (see for example Dixit & Pindyck, 1994, chapter 3):

Ex(D]=x(0)e "' +x (1 -e"")
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In the expected value equation note that the mean is just a weighted average between the initial
level x(0) and the long-run level Z(the weights sum one and are functions of the time and the
reversion speed).

The variance increases with the time, but also converges to 67/(21) as the time goes to infinite.
See the textbook of Oksendal ("Stochastic Differential Equations - An Introduction with
Applications") for details on Itd's stochastic integration, and the exercise (with answer) for the
mean-reversion process.

There is the following relation between the mean-reversion speed (1) and the half-life (H) of the
process: H = In(2)/m (click here for the proof). Half-life is the time that is expected time for the
stochastic variable x to reach the half of way toward the equilibrium level .

Var[x(D)]=(1-¢"")-




In order to perform the simulation is necessary to get the discrete-time equation for this process.
The correct discrete-time format for the continuous-time process of mean-reversion is the
stationary first-order autoregressive process, AR(1), see Dixit & Pindyck, 1994, p.76 (for At=1,
the equation below is more general). So the sample path simulation equation for x(t) is
performed by using the exact (valid for large At) discrete-time expression:
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Schwartz (1997, footnote 15) also recognizes the existence of an "exact transition equation", but
in the last term he uses an approximation to the variance instead the exact one presented in Dixit
& Pindyck.

Note that the equation above can be viewed as the sum of the expected value equation with a
random term (appear the standard Normal distribution) with zero mean.

The discretization alternatives with either the first-order Euler's approximation or the Milstein's
approximation formats introduce discretization errors into the simulation and have higher
computational cost because need small At.

The AR(1) discretization presented above is exact in the sense that we can use large At without
any problem in terms of simulation accuracy. See more details in the specific topic below.

Note that x(t) has Normal distribution and can assume even negative values. In many
applications we want that the stochastic variable assume only positive values, for example in the
case of price of commodities P. How build a good mean-reversion model for P? What is the
relation between P and our variable x(t)? What is the relation between the long-run level Xand a
long-run equilibrium level for a commodity price P?

In this Model 1 (the Model 2 is different at this point), we have two important simple concepts.
First, the model identifies the long-run equilibrium level for a commodity price as a very
important reference, so that assume that the commodity price P follows a mean-reversion toward
an equilibrium level Pgiven by the equation:

X = In(P)
Or the long-run equilibrium level for the commodity is simply P= exp(%), which is constant here.

The second concept from this model 1 is to set the prices in a way that the simulated mean
become E[P(T)] = exp{E[x(T)]}, that is, the relation between the variables x and P is such that
in the simulation we get the following expected value for the commodity price at the instant T:

E[P(D)] = exp{x(0) e " T+ X (1—e "T)
The direct process P(t) = exp[x(t)] doesn't work here because the exponential of a Normal

distribution adds the half of the variance in the log-normal distribution mean. In order to reach
the goal (E[P(T)] = exp{E[x(T)]}), the half of the variance is compensated using the equation:

P(t) = exp{ x(t) — 0.5 Var[x(t)] }

Where Var[x(t)] is a deterministic function of time given before.



With the equations above is easy to simulate the real sample paths for the commodity prices P
following a mean-reversion process. Just simulate x(t) by sampling the Normal distribution and
using the equation for x(t) given before. Calculate Var[x(t)] and use the equation above in order
to calculate the (simulated) value for P(t). Make this along the path (along the time for every
discrete instant t) and for n simulated paths.

By combining these three equations, you can simulate the real process for P(t) directly with the
equation:
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The interpretation for the 4 terms inside the first exp{.} is: (a) the first and second terms are drift
terms which weight the initial value and the long-run mean (note that the weights sum 1); (b) the
third term is the convex adjustment (or Jensen's inequality adjustment to the drift); and (c) the
fourth term is the stochastic term (with the standard Normal), which we sample in the Monte
Carlo simulation.

Note also that the volatility parameter enters only in the third and fourth terms, not in the drift, as
tell our intuition.

The framework above permits the simulation of the real process. Let us see how to perform the
simulation of the risk-neutral mean-reverting process.

Remember that the risk neutral format permits to value derivatives and requires the use of the
risk-free interest rate as the correct discount rate. As before, the process is risk neutralized by
changing the drift. In this risk-neutral format, the drift o of the process is replaced by r — 9,
where § is the dividend yield.

For the mean-reversion case, the real drift is oo = N(X— Xx), and the dividend yield is not constant,
it is function of x:

d=p-o=p-nE-x)

Where 1 is the risk-adjusted discount rate for the underlying asset x (remember the total return is
w=o+9).
With this expression we get the risk-neutral drift for the mean-reversion process:

r-0=r—-p+nE-x)=ME-x)—@-r=n{[x-(L-rym)] —x}

Note that L —r is the risk-premium. The comparison between both drifts indicates that the
passage from the real process to the risk-neutral one, can be viewed as subtracting the
normalized risk-premium (( L — 1 )/M) from the long run mean level %(= InF). In other words, in
the risk-neutral process the prices revert toward a level that is lower than the real long-run level,
and the subtracting term is a kind of normalized risk-premium.

By substituting the risk-neutral drift in the mean-reversion stochastic process, we can reach a



slight different equation for the simulation of x(t) and so for P(t).
Hence, the continuous-time risk-neutral stochastic equation for x is given by:
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In the risk-neutral format , the process x(t) is simulated using the exact (valid for large At)
discrete-time expression:
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The red term is all the difference compared with the real simulation format (compare with the
equation for x(t) presented before).

The process simulation is simple as in the real process case. Calculate x(t) with the equation
above and sampling the standard Normal distribution N(0, 1). With the simulated values of x(t),
use equation of price P(t) = exp {x(t) — 0.5 Var[x(t)]} together the equation for the variance of
x(t) in order to get P(t).

By combining these three equations, you can simulate the risk-neutral process for P(t) directly
with the equation:

Pb) - exp{ [in{Pce- 1)) exp-n ad] + [[in®) - -] - expi-mag)] -
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The interpretation of the 4 terms inside the first exp{.} is analogous to the interpretation
mentioned for the real simulation (two drift terms, a convex adjustment term, and the stochastic
term) but with the drift terms weighting the initial value and the risk-neutral long-run mean
instead the real long-run mean.

The spreadsheet below (non-protected) simulate both real and risk-neutral sample-paths of the
mean-reversion process described above (Model 1). NEW!

©Download the Excel spreadsheet simulation_reversion-modell.xls, with 45 KB

Discretization Accuracy of Mean-Reversion Stochastic Process

This discretization issue deserves a special discussion. The above discrete-time equations for the
Arithmetic Ornstein-Uhlenbeck x(t) permits an exact discretization in the sense that the accuracy
doesn't decrease if a larger time-step (At) is used.

Because the error from the discretization is eliminated using the above exact discretization
equation, the only error that remains in the simulation is the error from the random numbers.



This topic discusses the motivation to use a better discretization when available, including
reference to a list of stochastic processes that permit an exact discretization. This topic also
presents an Excel spreadsheet - available to download, that shows in practice the superiority of
the exact discretization over the popular Euler's approximation.

The use of large At is much more important in real options (long-term options) than in financial
options - although it is useful also for European financial options. Perhaps this explain that most
books ignore the exact simulation equation for mean-reversion, insisting to teach only Euler and
Milstein approximations even when exact solutions are available.

One exception is the textbook of Kloeden & Platen (1992) that in the topic 4.4 list "Some
explicitly solvable SDEs". The Arithmetic Ornstein-Uhlenbeck is their equation 4.2 (for the
geometric Brownian motion, see eq. 4.6 from this textbook). Kloeden & Platen use the explicitly
solvable SDEs (solution doesn't depend on small At) to check the accuracy of numerical methods
that depends on At (like Euler approximations). See pp.308-310 for the geometric Brownian
example.

The spreadsheet below simulate this mean-reversion stochastic process, Model 1, using three
different discretization methods in order to show that the exact method presented above is the
most accurate one.

The spreadsheet also plots the histogram chart (the theoretical is a log-normal distribution) for
the simulated values of the mean-reverting commodity price at a specified time T and for the
other specified parameters set by the user.

©¢Download the Excel spreadsheet reversion-simulation accuracy-vba.xls, with 372 KB

The discretization presented before is compared with the popular first order Euler approximation.
In short, it uses a discrete time-step At substituting directly the differential of time dt. The same
is done for the increment dx. The discrete-time version of the Arithmetic Ornstein-Uhlenbeck
using the first order Euler's approximation is given by the equation below (see for example the
book of Clewlow & Strickland, 2000, p.110, egs. 7.3 and 7.4):

AX=T(X—X)At + G AZ

As commented before, this equation is less accurate and the accuracy depends of a small time-
step At. So, with Euler approximation, in addition to the simulation error (from the random
numbers), there is the discretization error.

The figure below, a histogram for the oil prices 10 years ahead, was drawn using the spreadsheet
above.
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Monte Carlo Simulation of Mean Reversion (Model 2)

The Model 2 is similar to the model 1 in many aspects, but has important differences. This model
is known as "Schwartz Model 1", from his famous paper of 1997 in Journal of Finance
(although Schwartz prefers other mean reversion models, e.g., two and three factors models).

The model uses the same equation for x(t) indicated above for the Model 1. The differences are:
e The relation between x(t) and P(t) is simpler, P(t) = exp[x(t)];

e The relation between Xand Pis much more complicated than the case presented before;
and

e The simulated mean for the prices is not E[P(T)] = exp{E[x(T)]}.

In other words there are advantages and disadvantages for this model when compared with the
mean-reversion case analyzed previously (Model 1).

The other advantage of the Schwartz's model is that the application of the It6's Lemma, in order
to get the continuous time stochastic differential equation for the P(t) process, is easier than
model 1. However, for simulation purposes this step is not necessary (only for the PDE approach
is necessary). The correspondent continuous-time stochastic differential equation for the
commodity prices is:



dP=n(InF-InP)Pdt+c P dz

This is the Schwartz's eq.1 with other notation. The relation between Xand Pis given by the
equation (see the eq. 3 in Schwartz, 1997):

x=InP - (6”/(2n))

Hence the expected long-run equilibrium price (real process) depends on both the volatility and
the reversion speed.

The real simulation of this model is given by the following equation that again uses an exact
discretization that allows large At (correcting an old version of this website):

P.= exp{ [In(P;1) (exp(-n At)] + [(In P (67/(2n))) (1 — exp(-n At))] + [6 (SQRT((1-
exp(—21 A))/(21))) N(0,1)] }

Where the SQRTY(.) is the square root operator. The simulation again is very simple, you get the
sample paths of P(t) by sampling the Normal distribution. and using the equation above.

The expected value for P(t) in the simulation is given by taking the expectations (including the
convexity adjustment) in the above equation:

E[P] = exp{ [In(P¢. ) (exp(-n At))] + [(In B- (c*/(2n)) (1 — exp(-n At)] + [(c*/(4n)) (1 -
exp(-2n At))] }

In the long-run (large t), the real simulation converge to the following expected long-run level:

F = E[P(c0)] = Expected Long-Run Futures Price = exp[X + (0'2/(411))] = exp|[InP — (0'2/(41]))]
= Pexp[- 67/(4n)]

For the risk-neutral simulation, just subtract from X(here = In B— 6%/[21]) the normalized risk-
premium (L — r )/1, that is, the risk-neutral equation is given by:

Pi= exp{ [In(P;1) (exp(-n At))] + [(In P (6*/(2n) — (W — r )/m)) (1 — exp(-N At)] + [o
(SQRT((1-exp(=2n AD))/(2n))) N(0,1)] }

If you take expectation of the above equation you get the Schwartz's eq.7 for the expected value
of the futures prices in the risk-neutral format (or "under martingale measure", as Schwartz
prefers) because the random term (the last one inside the exponential operator) has zero mean
(from standard Normal distribution) and considering the convexity adjustment.

On similar way, the expected commodity price in the risk-neutral simulation converges in the
long-run (very large t) to the following equation (compare with Schwartz eq. 38):

Expected Long-Run Risk-Neutral Futures Price = exp[X — ((W—r )/M) + (0'2/(41]))]

See more about the differences between risk-neutral process and real drift process for the mean-
reversion case in the FAQ13.

However, I prefer the model 1 than model 2 because is more simple to see where the simulation



is converging, and the formula of prices expectation is also more simple.

Anyway, simulations has been showing (from a PUC-Petrobras project) that the real options
results are very similar for the two models if both models are simulated with the same long-run
level of convergence (by making the Schwartz's long-run futures price equal our Model 1 long-
run equilibrium P) and the same reversion speed 1, for example as in the chart below.
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A More Practical Approach to Mean Reversion Model 2

The main practical drawbacks from the Model 2 are: (a) the real simulation does not converges
to the real equilibrium level P; and (b) the long-run convergence level from the real simulation
depends on both volatility and reversion speed. See the equation of the "Long-Run Expected
Futures Price" above that we repeat below for convenience.

F = E[P(c0)] = Expected Long-Run Futures Price = exp[InP — (0'2/(411))] = Pexp|- o /(4n)]

The practical idea for the user is: instead using the equilibrium level Pas input, we enter as input
the expected long-run futures price that the simulation converges. So, the equilibrium value is
found by inverting the above formula:

P= exp[InF + (6%/(4n))] = F exp[c?/(4n)]

Alternatively, we estimate Pfrom with a regression (see the page on stochastic processes) or
other method, but we report to managers the value which the real simulation converges (F),



which is much more relevant in practice than P.

In this way, the simulation equation for the real prices process is given by:

P = exp{ [In(P;1) (exp(-n At)] + [(In F — (6*/(4))) (1 — exp(-n AD)] + [6 (SQRT((1-
exp(—21 At))/(21))) N(0,1)] }

Where the input F has the managerial meaning of average long-run level that the simulation
converges.

For the risk-neutral simulation, the equation using F as input is obtained easily: just subtract from
In F the normalized risk-premium in a similar way done before. This is left as exercise for the
reader.

Monte Carlo Simulation of Mean Reversion with Jumps

This model, which I call Marlim Model (reference to Marlim, the top producer oilfield in
Brazil), uses the first mean-reversion model presented before, but with the addition of random
jumps - modeled with a Poisson process. In addition, jumps are of random size. The jump
process dq is assumed to be independent of the continuous stochastic increment dz.

Initially consider the following Arithmetic Ornstein-Uhlenbeck process with discrete jumps
(modeled as a Poisson process) for a stochastic variable x(t):

dx=n{(X—-x)dt+ocdz +dq

This means that there is a reversion force over the variable x pulling towards an equilibrium level
X, like a spring force. The velocity of the reversion process is given by the parameter 1. Jumps
are represented by the term dq, which most of time is zero and sometimes occur jumps of
uncertain size ¢ and with arrival rate A.

dq = 0 with probability 1 — A dt
dq = ¢ with probability A dt

The jump process dq is assumed independent of dz, the Wiener increment from the continuous
process. That is, the Poisson process is independent of the mean-reverting process.

The uncertain size of the jumps are modeled with the probability distribution ¢. In the classic
paper of Merton (1976) of a jump-diffusion process, the jump-size distribution is assumed log-
normal (so that the jumps occur in only one direction).

Here is allowed the possibility of both jumps-up and jumps-down, given that a jump occurred.
Things are easier if we assume that there is the same probability of jump-up and jump-down, that



is, with a frequency /2 occurs jump-up and with a frequency /2 occurs jump-down.

Let assume the following symmetric distributions for the jumps-up and jumps-down: a two
Normal (truncated at zero, at least), with expected values of In(2) (= 0.693) in case of jump-up
and In(0.5) (or -In2) in case of jump-down. In addition, we assume equal probability for jump-up
and jump-down, so that the expected jump-size is zero (in this case we don't need to use the
compensated Poisson process, because the expected value of the x(t) is already independent of
the jump). See the figure below.
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The variable x(t) has the following expressions for the mean and variance (see for example Das,
1998, Poisson-Gaussian Processes and the Bond Markets) at a future instant T (remember the
expected jump-size in this case is zero):

Ex(D]=x(0)e " '+x (1 -e"1)

Var(D]=( - 17 42 'f‘”’z”

The probability distribution of x(t) is NOT Normal (the jumps adds fatter tails to the Normal
distribution from the mean-reversion component). For the higher moments expressions, see the
previously mentioned paper of Das (1998).

In the expected value equation again the mean is just a weighted average between the initial level
x(0) and the long-run level X(the weights sum one). Note that there is no jump term in the
expected value equation. This is the result of our jump model with symmetric distributions for
the jumps up and down AND the 50% probability both jump directions in case of a jump.

In the variance equation the jump term appear enlarging the variance when compared with the
pure mean-reversion model 1.

It is important to remember that E[¢7] # (E['#Dz, and in order to obtain this value is necessary to



estimate the integral:

Where () is the probability density function (in the present case the two Normal densities).
This integral depends of the distribution ¢ but not of the jump arrival parameter A (so that in
practice you can evaluate once the integral, if the jump size distribution is fixed).

The stochastic process for the commodity price P(t) is chosen so that the commodity prices are
function of X(t) described by the first equation of this item.

First let us to set the following relation between the long run process mean Xand the long-run
equilibrium price of the commodity P:

X = In(P)

The idea is to set the prices in a way that the mean become E[P(T)] = eE["(T)], that is, the relation
between the variable x and P is such that in the simulation we get the following expected value
for the commodity price at the instant T:

EP(D]=expix(0) e " T+ X (1-e "1}y

The direct process P(t) = ¢*® doesn't work here because the exponential of a normal distribution
adds the half of the variance in the log-normal distribution mean. In order to reach the goal
(E[P(T)] = ")), the half of the variance is compensated using the equation:

P(t) = exp{ x(t) — 0.5 Var[x(t)] }

Where Var[x(t)] is a deterministic function of time, including the jumps contribution, given
before in this topic. In the literature (for example Fu et al., 2001), the half-variances of both the
continuous process and jump process are subtracted in the simulation equation, but separately.

In the risk-neutral format , the process x(t) is simulated using the discrete-time expression with
an appropriate time-step At:

X = X1 € "8+ InB) —(n— )] (1— € 144 + 6, [(1-exp(— 2NAGY2 1) N(0,1) + jumps

Where 1 is the risk-adjusted discount rate for the underlying asset P. The red term (W - r )/m is
the normalized risk-premium subtracting the long run mean level (= In(F)).

The simulation process is simple. Calculate x(t) with the equation above, sampling both the
standard Normal distribution N(0, 1) and the possibility of jump: Poisson process with parameter
Aup and Agown for jumps-up and jumps-down, respectively.

Most of time the Poisson sampling points no jumps (dq = 0), but in case of jumps, we need to
sampling the Normal distributions either for jumps-up or jumps-down.

Now, with the simulated values of x(t), the simulation of P(t) is easy. Use equation of price P(t)
=exp{x(t) — 0.5 Var[x(t)]} together the equation for the variance of x(t) in order to get P(t).



The term "jumps" in the equation above adds variance to the x(T) distribution. In case of a
deterministic mean-reversion (6 = 0) with stochastic jumps, the jumps effect looks significative.
The jumps effect on the variance of x(T) that most of time obeys a deterministic mean-reverting

process is:

Var[x(T) | = (1-e 7). m
°=° 21

This variance initially grows but stabilizes for very long time T, due to the effect of the mean-
reversion force. It is not difficult to see in the above equation that when, in addition to the ¢ = 0,
the reversion speed M tends to zero (no mean-reversion) the pure jumps process with random
jump-size given by the probability distribution ¢, has the following variance (take the limit in
the last equation):

Var[x(T)pure jumps] = A E[¢7] T

Without the mean-reverting force, the variance of jumps grows with the time so that it is not
bounded as before.

What is the appropriate time-step At? Although the discretization for the mean-reverting part of
the equation of x(t) is exact (valid for very large At), the presence of jumps together with the
reversion creates some problems to use large At. For geometric Brownian process combined with
jumps there is no problem because the process drift doesn't depend on the current level of the
stochastic variable (it is possible even to use Brownian bridge with independent simulations for
each process). The same is not true for mean-reversion process - the drift is function of the
current value of the stochastic variable. Hence, the combination of reversion with jumps deserves
more caution.

For the case with jumps combined with mean-reversion, I recommend to use a relatively small
At, but larger than the required by Euler and Milstein approximations to reach a similar accuracy,
in most cases.

The idea is as follow. If the time interval At is sufficiently small, the probability of two jumps
occurrence is negligible because (L.At)” is much lower than (L.At). So in this case we can
consider only one jump in each time interval.

In order to illustrate the problem, imagine for example a At = 1 year and A = 1/year. The
probability of occurrence of two jumps in one year is given by P[N(t) =n] = (1/n!) (A t)" €~ M=
18.4% (make n =2; A = 1; t = 1), which is not negligible. If we consider both jumps at the ending
of the year, the mean-reversion will not act through the year, reducing the jumps chocks effect at
the ending of the year. A very different result will occur if one jump is considered at the
beginning of the year (so the reversion will exercise a strong force along the year, and the other
one at the ending of the year.

However, in the oil price process we are interested in rare large jumps only and we can use
smaller time-steps. Assume A = 0.25 per annum (is expected only one jump each 4 years). By
using a At = 1 month (= 0.08 year), the probability of two jumps in this period (one month) is
only 0.02%, which is negligible (the probability of one jump is > 2% and is not negligible). In
practice this means that we can assume only one jump using a smaller At (as in this case).




Even for the case with jumps associated with the mean-reversion, is preferable to use the above
discretization for x(t) than approximations for the mean-reverting part using Euler or Milstein
approximations. The Euler or Milstein approximations require very small At even without jumps.
With jumps, a At of one month in the above example means a larger error than using the exact
discretization used for the mean-reverting part.

For the real process simulation (instead the risk-neutral one), use the same equation for x(t) , but
without the normalized risk-premium (W - r )/1) subtracting the long run mean level (= In(P)),
that is the real simulation for x(t) is given by:
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The Excel spreadsheet available to download below, shows the real and risk-neutral sample-
paths from a simulation of the mean-reversion with jumps, named Marlim model (press F9 to
get new sample paths in the chart):

©¢Download the Excel spreadsheet simulation-reversion-jumps-marlim-real x_rn.xls, with
235 KB

In the spreadsheet, were used a fixed jump-sizes for both jump-up and jump-down. However, it
is easy to set probability distributions for the jumps-size. The formulas used in the spreadsheet
are the ones presented above.

The chart below presents an example of sample paths simulation for both the real and the risk-
neutral simulation of a mean-reversion with jumps, from the spreadsheet.

In this example the Marlim model considered A = 0.25 (is expected one jump each 4 years), with
equal probability to be jump-up or jump-down; reversion with half-life of two years towards an
equilibrium level of 20 $/bbl; volatility of 20%, etc (see the spreadsheet available before for
details).
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Algorithm: Most Monte Carlo commercial software (such as @Risk, Crystal Ball, etc.) have
direct facilities for simulation of Poisson distributions. However, some readers could be
interested on build up a simple simulator for Poisson distribution, and it is presented below.

One algorithm for the simulation of jumps occurrence is given by the following simple procedure
based in Dupire's "Monte Carlo Toolkit" (1998), and it is valid for small At (maximum one jump
in this small interval):

e For each time-step, from 1 to n, with length At, draw a number u uniformly: u ~ U[0, 1];

e Ifu<A.At, ajump occurs and is necessary to draw a jump-size from the distribution of
jumps-size ¢;

e Else (if u > A.At), set jumps = zero (no jump occurred in this time-interval) and go to the
next time-interval.

Many jumps in a time-interval- If the time interval At is sufficiently small, the probability of
two jumps occurrence is negligible. However, for large At, this is not true: is necessary to
consider more than one jump. In this case the jumps term become:

J(A)

jumps = > o,
i=1

Where J(At) ~ Poisson(A.At) gives the number of jumps in this time interval, each of them with
uncertain size ;.



In case of no jumps, in the equation above jumps = 0.

In practical terms, make jumps = jumps-up + jumps-down, so we get two summations, one for
jumps-up and another for jumps-down, each with arrival rate of A/2 (if jump-up and jump-down
have 50% chances each in case of one jump) and with distributions ¢y, and Ggown, respectively
inside the summations. However, again [ recommend a small At so that the probability of more
than one jump is negligible.

In order to consider more than one jump in each time-interval, it is necessary a more general
algorithm for Poisson processes. This algorithm is generally based in the relationship between
the Poisson(A) distribution and the exponential distribution, expo(1/A), is given in the textbook
of Law & Kelton (2000, p.478).
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