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Abstract:

Complex real options models for project economics evaluation suffer the curse of dimensionality, with several sources of uncertainties and with several options to invest in information. Details from the changing practical reality highlight the curse of modeling problem. Monte Carlo simulation is considered a good way to face these problems, but there is the difficult problem to optimize. This paper presents a model of optimization under uncertainty with genetic algorithms and Monte Carlo simulation. This approach permits to get new insights for the real options theory. Using the Excel-based software RiskOptimizer for a simple case (with a known value) and for a more complex real options model with investment in information. Some results from several experiments are presented with improvement suggestions. The strengths and weaknesses of RiskOptimizer are pointed out.   
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1 - Introduction

The practical problems of the curse of dimensionality
 and the curse of modeling
 have directed some recent real options research
 to the Monte Carlo simulation approach, due its modeling flexibility. The major problem is the difficulty to perform optimization (backward) with simulation (forward), which in general is necessary for American-type
 options. Among the papers that use new optimization techniques are Cortazar & Schwartz (1998), Longstaff & Schwartz (1998), Broadie & Glasserman & Jain (1997), and Ibáñez & Zapatero (1999). 

This paper presents another possibility to optimize a Monte Carlo simulation of real options problems: the use of the evolutionary computing approach. Specifically are used genetic algorithms (GA) as optimizer tool. The optimization problem is not more a Bellman’s backward procedure, but the evolution of guesses about the optimum using genetic operators like crossover and mutation, and other principles based in the Darwin’s principles of evolution. Guesses with high “fitness” will transfer their genetic characteristics to their offspring. High fitness means high real options value. 

The use of computational intelligence techniques in real options applications is very rare. The working paper of Taudes & Natter & Trcka (1996) uses neural networks for the purpose of real options valuation of a flexible manufacturing system. They use dynamic programming under uncertainty approach, with simulated annealing being used to select the network weights of the neural net, which approximates the real option value function. The uncertainty is included through a Monte Carlo simulation. The more general combination of the Bellman’s dynamic programming and neural networks is called neuro-dynamic programming (for a thorough theory and case studies, see Bertsekas & Tsitsiklis, 1996).

The case examined is a real option to invest in a petroleum field development. There are several papers applying computational intelligence for petroleum production problems. For example Rocha & Morooka & Alegre (1996) applied fuzzy-logic in drilling, pumping, and processing of offshore oil, aiming to cut costs. Bittencourt & Home (1997) applied genetic algorithms in petroleum reservoirs, to select the optimal exploitation alternatives.

Two main cases are presented in this paper: a simpler one, without investment in information; and a more complex case with investment in information.

This paper is divided as follow. Section 2 presents the real options case studies. Section 3 presents the strength and weakness of the software RiskOptimizer by genetic algorithms point of view. Section 4 presents simulations issues of RiskOptimizer. Section 5 shows the results. Section 6 presents some conclusions and suggestions. 

2 – The Real Options Case: Petroleum Field Development 

Consider an oilfield that was discovered, delineated, but remains undeveloped. The estimated reserve is 120 million of barrels. The investment to develop
 the oilfield is estimated in US$ 480 million (all values are present values). The investment is not obligatory, is optional and this options expires in T years. Two cases are considered: expiration in 10-years and expiration in two years.

The traditional value of the petroleum field is given by the static net present value (NPV). The NPV expression can be written:

NPV = q P B – D                                                                                                        Eq.(1)

Where:

q = economic quality of the reserve
, which is estimated to be 20%;

P = petroleum price, suppose the current value is US$ 20/bbl; 

B = reserve size, estimated in 120 million barrels
; and 

D = development cost, assumed to be US$ 480 million.

Note that for the base case value pointed above, the NPV is zero (= 0.2 x 20 x 120 – 480).

First consider the oil prices as the only source of uncertainty, with distributions of probabilities along the time, in other words following a stochastic process. For sake of simplicity, assume that the oil prices follow the popular Geometric Brownian Motion
, in the format of a risk-neutralized stochastic process
:

  dP  =  (r –  – 0.5 2) P dt   +  P dz                                                                     Eq.(2)

Where:

r  =  interest rate, assumed to be 8% p.a.;

 =  convenience yield of the oil, assumed to be 8% p.a., too; 

· =  volatility of the oil prices, assumed to be 25% p.a.; and 

dz  =  Wiener increment =  
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dt

 

e

 , where   ~ N(0, 1)

Given the above market uncertainty and given that option will take 10 years to expire (so there is a large timing flexibility to invest), how much values this real option rights? How is the decision rule?

The threshold gives the decision rule: threshold is the critical oil price level that makes optimal the immediate investment. The threshold level maximizes the real options value. Threshold value determines the optimal exercise of the real option, that is, the option exercise strategy consist to exercise the option only at or above this threshold level, so that the real options value is maximum. The threshold curve (that is the threshold level along the time) will be estimated by GAs. The threshold benchmark is the theoretical curve calculated by finite differences, and it is showed in the figure below, which was calculated with the software “Extendible” (Dias & Rocha, 1998).
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Figure 1 - The Theoretical Threshold Curve Calculated with Finite Differences

There are at least two ways to use GA to get the threshold optimal level. One is leaving GA works freely. The second way is to approximate the threshold with one or more functions, together or not with free points in the extreme(s). 

By changing the time variable (using the time to expiration instead the chronological time), several GAs experiments will model the threshold curve with two free points and two logarithm functions
. This is illustrated by the figure below.
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Figure 2 - Threshold Approximation with Two Logarithm Functions

The second case analyzed is similar to the first one, but with shorter expiration. The expiration is of two years. By reducing this time horizon was possible to simulate the experiments with more precision.

The third case was a more complex case considering the investment in information. This investment reveals the uncertainties of two technical parameters: reserve size (B) and quality (q). So, this case presents three sources of uncertainties.

The information in this third case is assumed to cost US$ 10 million (cost of an information acquisition well
). After the investment in information, there are several possible scenarios for B and q (but the expected values remains the same of anterior cases). The information is assumed to reveal these scenarios with the following triangular probability distributions (minimum, probable, maximum): 

B ~ Triang (60, 120, 180)  [million barrels]  

q ~ Triang (10%, 20%, 30%)

 These distributions are sufficiently large, so the investment in information is necessary in this case, and both intuition and industry experience tell that the case of investment in information must be performed. The optimization under uncertainty using GA is also expected to give a favorable answer, but in this case without a known “exact” optimal solution to compare. 

The investment cost D will be a function at least of the reserve size (B). Hence, for larger reserves the investment must adjust the oilfield scale, and so on. The equation for the development investment is given by the simple equation (all values in millions):

D = fixed investment + (variable cost x B) = 360 + (1 x B) = 360 + B    [in $million]

The cases with and without investment in information comparison will confirm the intuition that the investment in information is the best alternative. A more complex case could be choosing both, the optimal time of investment in information and the optimal timing of the development investment. 

3 – RiskOptimizer and the Genetic Algorithms 

This paper uses genetic algorithms (GA) in order to optimize the real option value. Genetic algorithms were developed by John Holland (see Holland, 1975), and a good description of GA is founded in Goldberg (1989), Davis (1991), and Michalewicz (1996).

There are some few applications of evolutionary computation in financial option pricing, which can be adapted to real options applications. One powerful possibility is the application of symbolic regression, which is considered a branch of genetic programming (see Koza, 1992, chapter 10). The paper of Keber (1999) is a good example, using a symbolic regression to get an analytical approximation for an American put option value. Other alternative, perhaps not used yet in option valuation, is solving the stochastic partial differential equation with analytical approximations to both threshold value and the option value itself.

The idea in the present paper is to apply GA in order to estimate the threshold curve of a real option application. Traditionally, the threshold curve is determined together with the real options value by solving a stochastic partial differential equation (PDE). In this paper, the GA guesses the threshold curve. For each trial a Monte Carlo simulation is performed in order to evaluate its “fitness”. Each trial is an organism (or chromosome) and the “fitness” function is the real options value also called dynamic net present value
. The total number of simulations is equal to the number of valid
 organisms. For 1,000 organisms using only 1,000 iterations for each simulation is equivalent to a simulation of one million iterations, which has a computational time price. 

The way to set the threshold guess and run the Monte Carlo simulation was partially inspired in the case presented by Winston (1999, case of option to expand a gold mine).

The software utilized was the Excel based add-in RiskOptimizer, from Palisade. RiskOptimizer is an integration of two popular Palisade’s software packages: @Risk, which performs Monte Carlo simulation, and Evolver, which performs complex optimization using genetic algorithms.  This section analysis focuses both, simulation and optimization aspects of RiskOptimizer. 

RiskOptimizer, as Evolver, uses the steady state reproduction with parameter one. In other words, after the creation of the initial “population” of GA trials, each new solution created in the reproduction phase using the genetic operators replaces the worst solution (lower real option value). 

The discussion if steady state reproduction is better or worse than generational replacement
 is out of this paper scope, but the practical insight given by Davis (1991) is very relevant for the analysis of the RiskOptimizer performance and potentiality. Davis pointed out that steady-state reproduction has been used with success for the case of without duplicates. This is a “reproduction technique that discards children that are duplicates of current chromosomes in the population rather than inserting them into the population” (Davis, 1991, p. 37). 

Unfortunately RiskOptimizer doesn’t permit the elimination of duplicates, weakening the steady state reproduction technique. Without eliminating duplicates, sometimes the user faces with premature convergence problem, due the loss of diversification into the population, before reaching the optimum solution. Introducing more diversity into the population can reduce the GA problem of premature convergence behavior without guarantee of optimality. The elimination of duplicates intends to keep up diversification. 

The figure below illustrates the problem of premature convergence due the loss of diversification into the population. The color panel of genes (chart right bottom) and the panel of genes values (chart left bottom), show that always the entire population has the same genes. The panel of performance (chart left upper) and the panel of organisms evaluation (chart right upper) indicate that the few different remaining organisms are “evolving” to become with identical genes.
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Figure 3 - Premature Convergence by Lost Diversification  (case 10 years expiration, two functions)
The obvious recommendation is the software developer (Palisade) to include, at least as a user option, the facility to eliminate duplicates. Even more flexible and better could be the option to set the maximum duplicates percent, so that a limited number of duplicates is permitted, with the limit defined by the user. 

As noted by Bittencourt & Home (1997, p.547), some researchers prevent premature convergence of a GA by using strategies like incest prevention, niching and increasing mutation rate, in order to visit new regions in the search domain. RiskOptimizer permits to increase the mutation rate during the optimization process, however in general this was not sufficient when most diversification were lost.

Hybridization of genetic algorithms with other optimization algorithms is another suggestion to improve the GA performance. One example is the hybridization of GA with simulated annealing (SA). The performance of SA is often frustrated by its slow convergence, but combined with GA introduces more diversity into the population eluding premature GA convergence
, and avoiding the long computation time required by SA (see Sait & Youssef, 1999, pp.164, 349-350). 

Other hybrid GA is used in Bittencourt & Home (1997) to petroleum reservoir optimization, which GA is hybridized with optimization algorithms tabu search (TS) and polytope search. Tabu search is a generalization of local search that considers, in addition to the objective function value, the search history, region being searched, and so forth (Sait & Youssef, 1999, pp. 240-241). This avoids the current region to be revisited for some finite number of iterations, and provides a mechanism that forces the search into other regions of the domain (Bittencourt & Home, 1997, p.548). Polytope
 search intends to accelerate the search convergence reducing computer time, but has the drawback of its sensitivity to the initial size and location of the polytope. 

Other interesting GA hybridization is with both, simulated annealing and tabu search, which is described as a reasonable combination of local search and global search, and TS is incorporated also to prevent local optima convergence. The idea: (a) the search domain is globally searched with GA; (b) the GA offspring is introduced into the population using as criteria the acceptance probability of a SA; and (c) the neighborhood of the accepted chromosome is searched by TS. In a maintenance scheduling problem, the hybrid GA + SA + TS found better results than the pure GA or the hybrid GA + SA (see Sait & Youssef, 1999, p.350). 

The second problem with steady-state reproduction is the case when the evaluation function is noisy, as pointed out by Davis (1991). Noisy evaluation means that the fitness function (here the simulated real option) returns different values each time the same organism is evaluated. Davis mentioned a more dramatic case: the use of a GA to find good parameters settings for a main GA, which the performance of the genetic operators can vary largely, with noisy indications about the operators’ parameters. For noisy evaluation function is better the use of generational replacement. In the steady state reproduction, “a lucky good evaluation for a chromosome will be forever associated with it, and, since a good chromosome won’t be deleted from the population using this technique, the spurious evaluation will cause the bad genetic material to disseminate throughout the population” (Davis, 1991, p.40).

In the present case, even being less dramatic than the example given by Davis, the evaluation function is somewhat noisy due the precision of a Monte Carlo simulation. The simulation takes most of the computation time in the present real options problem, and increasing the simulation precision with more iterations is a very time consuming process.

One simulation with 1,000 iterations plus the options valuation, using 300 MHz. Pentium II, takes 40 seconds in the two years case with t = 0.01 y. and about 80 seconds for the case with investment in information (same t). So, 1,000 GA trials are evaluated in about 11 hours to 22 hours, depending of the case
. Using 200 iterations, the simulation time is reduced to 20 seconds (case of investment in information). The figure below presents one of the RiskOptimizer great facilities: the time spent by each trial for the last case for one of the cases with investment in information that was analyzed.  
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Figure 4 - Simulation Time

Other GA problem faced with some experiments is the problem of epistasis. This occurs when there are interactions between genes (one gene value affects other gene value), bringing additional difficulties to reach the optimum or near optimum solutions. Some authors suggest the reduction of epistasis problem by the use of inversion operators, which consist of a position switch of two randomly chosen genes (see Pacheco, 2000, p.3). The most recommended approach for strong epistasis problems is the use of messy GA, which permits the genes to change its position inside the chromosome, for a more convenient position for crossover operations purposes (preserving good schemata).  

The next figure presents the problem of evolution to a best solution using RiskOptimizer for one from several cases analyzed. The table shows only trials that became “new best”. Note that after the last “new best”, in the 277 trial, more than 300 new trials were performed (more than 7 hours) without any new success, even increasing the mutation ratio (from 1% up to 30%) sometimes during the last 100 trials.  This could be an indication of global optimum or could be a “lucky” simulation that put the iteration 277 at the top, so that even stronger alternatives did not reach the 277 case. Anyway, thanks to RiskOptimizer excellent flexibility (offering the window showed below) is possible to see the software drawbacks and/or the model limitations presented here. 
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Figure 5 – RiskOptimizer Watcher Showing the New Best Occurrence 
Even with the limitations of the GA method used by RiskOptimizer, the great flexibility of the tool permitted to get new insights not addressed before in the real options literature. This point will be returned in the sections 5 and 6.

4 – RiskOptimizer and the Monte Carlo Simulation 

The previous section presented that one problem of the steady state reproduction used by RiskOptimizer is the noisy evaluation of the fitness. This section examines the extension of the noisy problem by analyzing the precision of the Monte Carlo simulation with RiskOptimizer for purposes of options valuation. 

Wayne Winston, that have a set of published books on decision sciences and simulation using Palisade’s products (@Risk and RiskOptimizer), valuing an European put option, stated: “After 10,000 iterations why have we not closer to the price of the put? The reason is that this put only pays off on very extreme results… It takes many iterations to accurately represent extreme values of a Lognormal variable” (Winston, 1998, p.335, including the bold highlight).

The valuation of options highlights the simulation error problem due the asymmetric nature of the options. The figure below presents a simulated result of the real option value. Note the asymmetry of option. The chart was truncated at 500 MM$ in the X’s axis, but there was some very low probability density points up to 800 MM$. 
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Figure 6 - Distribution for the Real Options Value (Dynamic NPV)  (case 10 years, Dt = 0.25 y.)
There are a number of ways to improve the simulation precision. The most obvious alternative is by increasing the number of iterations. But this is very time consuming. 

RiskOptimizer, as @Risk, use a variance reduction
 technique named Latin hypercubic sampling. This increases the precision when compared with the pure Monte Carlo sampling. The book of Press et al (1992) provides the algorithm for this method and Moro (1995) gives some comparison for the computation efficiency with others techniques. Latin hypercubic is a special type of stratified sampling for higher dimensions, see a discussion and comparison in Boyle et. al (1997). Other variance reduction technique that can be combined with stratified sampling is “importance sampling”, which concentrates samples in the area where they are more effective by using a priori information on the function. So, its possible to generate uniformly distributed samples with Latin hypercubic, which can be utilized for importance sampling.

Other way to improve the simulation performance is by moving from Excel environment to a faster one, for example using C++. This solution is very promising for this purpose, but requires developing a Monte Carlo simulator and abandoning the Excel flexibility and its ease of use. The solution of C++ is a planned future improvement, but is also necessary to think about other actions to get faster and reliable simulations of real options problems. With this aim, Number Theory can help with low-discrepancy sequences
, the called quasi-random simulation. This is explained below. 

Birge (1995), among others, proposes Quasi-Monte Carlo (QMC) method for options pricing valuation with complex contingencies. He argues that in the more traditional Monte Carlo approach “the error from central limit arguments decreases slowly, inversely proportional to the square root of the number of observations. Quasi-Monte Carlo sequences, on the other hand, …have order of magnitude better asymptotic error rates”. This alternative relies on numerical properties of special sequences, quasi-random numbers or low-discrepancy (not low-variance) sequences
, based purely on numerical (not statistical) analysis. 

Clewlow & Strickland (1998, pp.129-133) present charts with plots comparing random and quasi-random numbers. They show clearly that the first one leaves “several ‘clumps’ of points close together and empty spaces”, whereas the quasi-random plots “are much more evenly distributed but still appear somewhat random”. They present the quasi-random Faure
 numbers approach (with computing pseudo-code for a European option), and one simple example which presents a near zero error for only 250 iterations, whereas the alternative of pseudo-random numbers need at least 4,000 iterations.

Press et al. (1992) present one algorithm to generate Sobol’s sequences. Moro (1995) gives an efficient method to get standard normal sequences N(0, 1) from uniform sequences U[0, 1), which permits a more efficient use of Quasi-Monte Carlo approach. 

The wonderful practical aspect is that while Monte Carlo error is 
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, quasi-random sequences error generally reduces to O(1/N), being N the number of observations. 

That means that Monte Carlo requires the square of the number of iterations demanded by Quasi-Monte Carlo to get the same error. For example: a QMC with only 1,000 iterations could reach the traditional Monte Carlo precision using 1,000,000 iterations! This is sufficient to solve the problem reported in this paper concerning simulation precision x required computation time. Unfortunately this result cannot be generalized and there are some difficulties for high-dimension case that needs attention
. Fortunately there are recent research pointing a promising performance for high dimensions using QMC. Willard (1997) shows that in some cases the “effective” dimensionality can be reduced
. Galanti & Jung (1997) analysis in detail the quasi-random sequences and reported success for a 260-dimensional application. Paskov & Traub (1995) presented an efficient QMC simulation for a 360-dimension valuing a financial derivative (mortgage valuation). In general variance reduction techniques can improve the simulation performance (importance sampling for example), however some reduction variance techniques are not adequate to use with Quasi-Monte Carlo
.

5 – Results: Theoretical versus Genetic Algorithms 

The next figure presents the problem of optimization in terms of level of possible thresholds curves in relation to the theoretical threshold curve (finite differences). Different threshold curves (above and under the theoretical level, with distance from 0% to +- 30%) were simulated and the values plotted in the chart. Note that there is a near plane region close to the optimum value (in red)
. This region is named of optima region because, for the simulation precision, all the points could be considered as the optimum one. Not showed in the above picture, the 1% above the NPV static rule values only $ 11.5 MM in the simulation.  
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Figure 7 - Optima Region for the Real Options Problem (two -years case)
Other interesting aspects of this particular chart are the neighboring regions facing the optima region. Considering that always there are some imprecision in the model parameters, looking the inclination of the curve above, the higher neighboring region (right) is less dangerous than the lower neighboring region (left) in terms of possible loss of value.   

Some results of GA experiments for the 10-year case are presented in the figure below. There are some cases below and other above the theoretical optimum. Some simulations showed GAs solutions that are under the theoretical level for a time horizon interval and above the theoretical level in the rest of the time horizon (see the f6a case in the figure). Even crossing the theoretical optimum curve, the solution was proven to be in the “optima region” mentioned before. 
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Figure 8 - Threshold Curves: Theoretical x GAs (case 10-years)
The optima region makes the close competition problem even more complicated due the noisy evaluation function from the simulation precision. This changes the fitness order of the trials during the optimization.

For the 10 years case the theoretical real options value is estimated in US$ 96.68 million, using finite differences method
 (was used the software “Extendible”, see Dias & Rocha, 1998). Several GA trials got fitness in the precision range of the simulation, between US$ 95 million and US$ 97 million. As pointed before, steady state reproduction of RiskOptimizer has problem with noisy simulation, which is a practical problem in the case of the low number of iterations used due the computational time restrictions.

The shorter time to expiration case (two years) is similar to the above case, but a bit more precision was reached in the simulation (lower t). In reality, the threshold curve is equal to the last two years curve of the picture above. A modeling difference used here is only one logarithm function (instead two functions for the 10-years case) and two free points were used. 

One important difference is the option value, which is reduced to US$ 60.17 million for the two years expiration case (contrasting with US$ 96.68 million for the 10 years expiration case). The close competition and the noisy fitness pointed several GA alternatives as good candidates of near-optimal solution. So, GA solutions in the second case got in the “optima region” plateau with values between US$ 58 million and US$ 62 million.

The more complex case with investment in information uses two years as time to the option expiration. In this case, instead the threshold to referred to the oil price P level, it is referred to the whole operating project value V (= q P B) sufficiently high value in order to exercise the option. 

In order to get a more general modeling, the threshold is normalized as the ratio V/D. The traditional NPV rule points to invest if this ratio is above 1, whereas the real options threshold will demand a higher V/D level in order to proceed the earlier exercise.

For this case, the threshold curve is not known a priori as the precedent cases. So, instead functions, was performed a GA modeling with more free for the resulting threshold curve. The figure below presents the RiskOptimizer summary for the case with investment in information. The window shows all the inputs range of values, and some highlights of the optimization performed until that point.  
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16_|$GQs26 7 13 1

17_|$GNs$26 2 2 1

18_|$GJs26 1 24 0

19 |sFzs26 0 0 0

20 |sFPs26 2 2 0

21_|SEV$26 7 7 0

22 |$Cx$26 2 2 0

23 |sAZ$26 6 2 0
sB$26 0 0





Figure 9 - Summary for the GA Modeling - Case with Investment in Information

Note that the maximum real options value here (US$ 74.5 million) is much higher than the value without the opportunity to buy information about the reserve size and the quality of the reserve (previous case of US$ 60.17 million). The value of information in this case is US$ 24.3 million, much more valuable than US$ 10 million that it costs, giving at least
 a net gain of US$ 14.3 million.  

The figure below shows the GA results for the case with investment in information (red line) and the normalized (in terms of V/D instead P) threshold of the precedent case (without investment in information). 
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Figure 10 - The Thresholds Curves with and without Option to Buy Information

The threshold with investment in information found freely by the GA, presents a level near the normalized case without information. But with information is possible for example to invest less (lower scale) for smaller fields and more for larger fields, and this increase the oilfield value. 

6 – Conclusions and Suggestions  

The analysis resulting from the genetic algorithm application as optimization tool under uncertainty opened new insights about real options evaluation not before addressed in the literature. The close competition of several threshold alternative curves drives the search to the “optima region”, which one good solution is very close of the absolute optimum solution. This brings implications for the real options evaluations and to general management of real options portfolio.

Several strengths and weakness of the software RiskOptimizer were addressed in this paper. The most crucial suggestion is the inclusion of an option for duplicates elimination, in order to preserve the diversification of the population, preventing premature convergence of the GA. Other RiskOptimizer limitation is related to the simulation, which brings noise to the evaluation function, with the problem of close competition becoming critic
. The several modeling flexibilities, the informative and helpful windows, and other user-friend resources make the RiskOptimizer a very good tool for the first analysis of a complex problem.

The suggestion is to continue the research in part still using RiskOptimizer, but preparing a more professional application by moving to a faster environment like C++ program, and by using Quasi-Monte Carlo simulation together with variance reduction techniques, in order to get faster and more reliable solutions. In this new environment, a more specific GA could be developed, avoiding the problems related in this paper and perhaps using hybrid genetic algorithm.
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� Curse of dimensionality is the exponential computational time explosion with the problem dimension. Consider three state variables (two stochastic variables plus the time), one element of a three-dimensional grid has 23 or 8 points, one in each vertex. For 5 state variables, the grid element has 25 points (= 32) leading to serious practical problems. Some real options papers, as Dias (1997), consider several sources of uncertainties (economic, technical and strategic), but using simplified models to get practical results.  


� Curse of modeling is a problem formulation with an explicit system. Changing some aspects of the model is necessary to change all the optimization procedure. The use of a simulator to avoid the curse of modeling is one goal of this paper that uses GA under uncertainty with Monte Carlo simulation.


� See Dias (1999) for the real options literature overview and the recent trends. See Dixit & Pindyck (1994) and Trigeorgis (1996) for the general theory of real options and applications.


� American options can be exercised before the expiration, so there is the problem to find the optimal earlier exercise of the American option. European options only can be exercise at the expiration date.


� In order to develop the oilfield is necessary to drill development wells, to build/buy/rent a production platform and its processes facilities, to launch pipelines, etc. 


� Introduced by Dias in Stavanger’s Workshop on Real Options, May 1998. The reserve is more valuable as higher is q. The value of q depends of several factors: the permo-porosity properties of the reservoir-rock; the quality and properties of the oil and/or gas; reservoir inflow mechanism; operational cost; country taxes; cost of capital; etc. For details about q see: � HYPERLINK http://www.puc-rio.br/marco.ind/quality.html ��http://www.puc-rio.br/marco.ind/quality.html�  


� All the oil reserves have associated gas. Consider the 120 million barrels as total equivalent barrels.


� The simulation of a more realistic model is also possible and straightforward. For example the mean-reversion with jumps, as in Dias & Rocha (1998). The idea here is the simplicity for comparison purpose.   


� For a discussion and the discretization of this equation in order to perform the Monte Carlo simulation, see for example Clewlow and Stickland (1998, mainly the chapter on Monte Carlo simulation).


� For American put, Ju (1998) uses a multipiece exponential function to approximate the early exercise boundary (threshold curve). For American call, the exponential approximation is the analogue idea.


� Lower cost wells drilled with lower diameter to gain both information and option to be a producer well.


� The NPV is calculated under uncertainty (here by running a Monte Carlo simulation) and given the optimal exercise of the options available (here by exercising at or above the threshold line). So, this is a dynamic NPV in contrast with static NPV that doesn’t consider the uncertainty and the timing option.


� Valid means satisfies the restrictions. For the not valid organisms, the simulation is not performed in the program (saving most time) so that generation of non-valid organisms is not critical in the practice. 


� Generational replacement means that all the population will be replaced with the new organisms created by the evolutionary process. Some of them could be identical of the anterior, and most cases the previous best is preserved (elitism).


� An example: improving the convergence of a GA by using the acceptance probability of SA as the acceptance criterion of GA’s new chromosomes trials (see Sait & Youssef, 1999, p.349-350). 


� Polytope is a geometric figure bounded by hyperplanes. In this algorithm, the polytope flips about the centroid towards the optimum (see Bittencourt & Home, 1997, pp.547-548).


� If 1,000 iterations are not sufficient and more precision is necessary, the required computation time would be even higher. The evaluation of every alternative in this example with investment in information, even with 80 times faster computer, would take about 1.5 billion years for all alternatives in the search space. GA can be view as a global search technique that intends to reduce the search time using evolutionary approach to get a near of optimum solution. 


� Variance reduction techniques are tools to use known information about the problem, in order to get the parameters estimative of simulated distribution with lower variance (so an improved estimator). The main techniques are antithetic variables; stratified sampling; importance sampling; control variates; conditional Monte Carlo; moment matching methods; correlated sampling; reducing the dimensionality, and others.


� Discrepancy measures the extent to which the points are uniformly dispersed inside a region. “Low-discrepancy sequences have the property that as successive points are added the entire sequence of points still remains more or less evenly dispersed throughout the region” Boyle et al. (1997).


� The main type is called “Sobol’s quasi-random sequence”. There are many ways of producing quasi-random numbers. See Clewlow & Strickland (1998, pp.129-133) for a discussion. Birge (1995) prefers Sobol rather Faure’s quasi-random numbers, arguing that the second is not so good for high dimension problems. Brotherton-Ratcliffe (1995) describes a new technique to generate Sobol’s sequences, claiming as faster and more precise.


� Willard (1997) experience however, indicates that “Faure’s sequences are not as accurate and require significantly more computation time than the Sobol and Halton sequences”.


� Bouleau & Lépingle (1994), Aragão & de La Roque (2000, pp. 4-5) among others, point that Sobol’s sequence has changeling problems with high dimensions. Papageorgiou (1999) points that although QMC worst case convergence is (log n)d/n, where d is dimensionality, this can be improved for example with same special integral approximations, with worst case becoming (log n)1/2/n (both convergence and error). Ökten (1999) used a hybrid-Monte Carlo sequence (or mixed sequences) to option pricing, with low-discrepancy sequences for the “low dimensional part” and random vectors to the “high-dimension part”.


� Willard (1997) uses the technique of “Brownian bridge”, from the stochastic calculus toolkit. He points that “Numerical examples show that it substantially reduces the errors and improves the convergence of price estimates for our high-dimensional pricing problem”. Morokoff (1997) presents two techniques for 360 dimensional case, generalized Brownian bridge and particle reordering. Acworth et al. (1996), used a technique called principal components analysis with Sobol’s sequences, claiming better results than Brownian-bridge.


� Galanti & Jung (1997) report studies pointing that antithetic variables and stratified sampling alter the order of the low-discrepancy sequences, and so may not help in the simulation performance.


� This (red) value was simulated (50,000 iterations; t = 0.01 y.) using the theoretical threshold. The correct value (60.17) is very close of the simulated (60.23). Due the simulation error level, two lower levels (2.5% and 5% below the theoretical level) got slight better value (60.26, 0.05% higher).


� Using the analytic approximation considered one of most precise for American options, Bjerksund & Stensland, the value is very close: US$ 96.38 million.


� In reality the gain is even higher because the GA solution is not the optimum, it’s only near the optimal. With more time to evolve this gain tends to increase. But the GA result is sufficient to approve the investment in information.


� The good software review of Bergey & Ragsdale (1999) does not mention the steady state feature, and so not mention the problems with duplicates and with noisy functions, even using the practical book of Davis (1991) as reference. The authors tested Evolver 4.0 (the same optimization tool of RiskOptimizer) with the De Jong functions and with the traveling salesman problem, reaching good results without be a panacea.
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