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ABSTRACT
The holder of a petroleum exploration concession has an investment option until the expiration date fixed by the governmental agency. In some countries these rights can be extended at additional cost. The value of these rights and the optimal investment timing are calculated by solving a stochastic optimal control problem of an American call option with extendible maturities. The uncertainty of oil prices is modeled as a mix jump-diffusion process. Normal information generates continuous mean-reverting process for oil prices, whereas random abnormal information generates discrete jumps of random size. Comparisons are performed with the popular geometric Brownian process and also the quantification and analysis of alternative timing policies for the petroleum sector.
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1 INTRODUCTION

Petroleum firms acting in exploration and production (E&P) routinely need to evaluate concessions and to decide the investment timing for their project portfolio. In some countries, the exploration concession has features such as the possibility of extension of the exploratory period if the holder of the concession pays a fee (extra-tax) to governmental agency and/or commits to additional exploratory or appraisal investment. This extendible option feature for petroleum E&P concessions is the case of Brazil
, but also exists in Europe (see Kemna, 1993), and occurred in the USA. The adequate concession timing policy in the exploratory phase is an important point in the industry debate, to which this paper intends to contribute with some quantification of alternative timing policies under market uncertainty. 
This paper is related to the real options theory (or theory of irreversible investment under uncertainty). As a new contribution, we use the framework of options with extendible maturities, employed before only for financial options
, not for real assets. In addition, we use a mix stochastic process (mean-reversion with jumps) to model petroleum prices, which, despite its economic logic, has not been used before in petroleum economic literature.

The model is useful for both, firms facing investment decisions and governments evaluating sectoral policy (mainly timing policy), considering that firms have rational expectations and will act optimally.

2 THE CONCESSION AND THE STOCHASTIC PROCESS FOR PETROLEUM PRICES 

Consider an oilfield discovered in the concession area, and suppose that the oilfield is delineated (small geological uncertainty), so that is not optimal to continue the appraisal phase. The focus of the model is the development decision. The model identifies the optimal investment rule and the oilfield value.  

In the exploratory phase, it is important to consider technical uncertainty (existence, size and quality of petroleum reserves). The integration of our development decision model (market uncertainty oriented) with exploratory factors (technical uncertainty) can be performed easily with simple models
, but also with more complex models
. The development decision model is also useful for the exploratory valuation model: the evaluation of the development project is a necessary step to evaluate the exploratory prospect itself. In the spirit of dynamic programming, calculations are performed backwards, and for this purpose we need to know the terminal value (option to develop a delineated oilfield) in order to estimate the initial value (exploratory prospect with some probability of success).

The oil price, the main source of market uncertainty, is modeled with a special stochastic process: a combined jump-diffusion process. This model follows Merton’s (1976) concept on asset prices oscillations. The arrival of normal information over an infinitesimal time interval generates only marginal (small) adjustment of the prices, which is modeled by a continuous diffusion process, whereas the arrival of abnormal information (very important news) generates a discrete stochastic shock (jump), which is modeled as a Poisson process. The model that combines both is named jump-diffusion, and is also known as the Poisson-Gaussian model. 

We follow Merton (1976), except that he used log-normal distribution for the jumps’ size instead of the two truncated-normal distribution that we assumed, and he used geometric Brownian (because he models financial assets, not commodities) instead of mean reversion used in this paper for the continuous process. The mean-reversion with jumps process has been used before to model interest rate uncertainty (see Das, 1998, p.4), but despite its economic logic, has not been used before for oil prices.

The adopted diffusion process for petroleum prices is the mean-reversion process because it is considered the natural choice for commodities
. Normal information means smooth or marginal interaction between production versus demand (with inventory levels as an indicator) and depletion versus new reserves discoveries (ratio reserves/production as indicator). Basic microeconomics theory tells us that, in the long run, the price of a commodity ought to be tied to its long-run marginal production cost or, “in case of a cartelized commodity like oil, the long-run profit-maximizing price sought by cartel managers” (Laughton & Jacoby, 1995, p.188). In other words, although oil prices have random short-term oscillations, they tend to revert back to a “normal” long-term equilibrium level. Production cost varies largely across countries, mainly due to the geologic features, and most of the lower cost countries belong (or are influenced) by the OPEC cartel. Hence, even with growing non-OPEC production, the OPEC role remains very important in the production game of the petroleum industry. 

Other important mean-reverting evidence comes from the futures market, as pointed out by Baker et al (1998, pp.124-127). First, the term structure of futures prices is downward sloping (toward the “normal” long-run level, in backwardation) if the spot prices are “high”, and is upward sloping (in contango) if prices are “low”. Second, if the prices are random walk, the volatility in the futures prices should equal the volatility of the spot price, but the data show that spot prices are much more volatile than futures price. In both cases, the mean-reverting model is much more consistent with the futures prices data than the random walk model. In addition, the econometric tests from futures term structure performed by Bessembinder et al (1995, p.373-374) also reveal strong mean-reversion for oil prices and agricultural commodities (but weak reversion for precious metals and financial assets).

 Figure 1 presents the nominal oil prices
 from January 1970 to November 2000. In this chart is possible to observe that sometimes there are large variations (jumps) in short time intervals. In our model we are interested only in large jumps. The 30 years’ time-scale of the chart is appropriated for the real options problem of petroleum concessions with horizon of several years. In this time-scale, a large variation in a time-interval t of one/three months is like a discrete jump. However, in other applications, e.g. for commodities trading purposes, jumps must be defined in a shorter time-interval t of one or few days, rather months used here in real options applications
. 
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Figure 1  Monthly nominal oil prices 1970-2000 (Brent and similar oils)
The jumps
, modeled as a Poisson process, can be either positive or negative for petroleum prices, depending on the kind of economic/politic abnormal news. This feature is incorporated into the model, which allows either direction for the jumps and stochastic size for the jump. In petroleum history there have been abnormal news events causing large jumps in petroleum prices, over only a few weeks. Figure 1 above shows the main large shocks or jumps. Jump-ups occurred in 1973/1974 (Yom Kippur war and Arabian oil embargo), in 1979/1980 (Iran revolution and Iran-Iraq war) in 1990  (Kuwait invasion by Iraq), and in 1999 (OPEC and allies supply shock)
. Jump-downs took place in 1986 (Saudi Arabia price war), in 1991 (the Iraq defeat), and in 1997 (Asian crisis). These historical large jumps due to the unexpected abnormal news, took one to three months to be entirely absorbed by the oil prices.

Let P be the spot price of a barrel of oil. Most of the time, the prices change continuously as a mean-reverting process and sometimes change discretely by jumps. In this way, the oil prices follow the following equation stochastic differential equation:
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              k = E( – 1)                                                                           (1)
Equation (1) for the rate of variation of oil prices (dP/P) has three terms on the right side. The first term is the mean-reverting drift
: the petroleum price has a tendency to go back to the long-run equilibrium mean [image: image4.wmf]P

 with a reversion speed . The second one presents the continuous time uncertainty represented by volatility and the Wiener increment dz. The last one is the jump term, with the Poisson arrival parameter  (there is a probability dt to occur a discrete jump) and jump size . The jumps have random size:  has a special probability distribution with mean k+1, represented by two truncated-normal distributions, one normal distribution for the jump-up and the other one for the jump-down, (see Fig.2 below). In case of jump, this abnormal movement has the same chances to be up or down. 
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Figure 2  Random jumps distribution
Figure 2 shows that the exact size of each jump is uncertain. The same figure indicates that, in case of jump-up, the price is expected to double, whereas in case of jump-down the price is expected to drop by half. We are interested in large jumps (as shown in the figure) but with low frequency (rare events). 

By taking expectations in equation (1), it is easy to see that E(dP/P) =  ([image: image6.wmf]P

 P) dt, that is, the process is expected to revert, and this tendency is higher the farther the current price is from the long run mean. This is like an elastic/spring force (F = k x, where x is the distance to the equilibrium level).                                                                             
The jump-diffusion model has economic logic appeal and is a good mapping for the probability distribution over time for oil prices. The model presents complex empirical problems due to the additional parameters estimation, when compared with a more popular (and simpler) model, the geometric Brownian motion (GBM). However, GBM models are less rigorous than the jump-diffusion stochastic process presented above, and this disadvantage can be important to model long-term options like undeveloped reserves. Other important models for oil prices are mean reverting models such as the two and three factors models, and models with stochastic long run price, which we discuss briefly. 

The two-factor model (Gibson & Schwartz, 1990) generally uses GBM for spot oil prices and a stochastic mean-reverting convenience yield . This additional factor corrects the main bias from the one-factor GBM model, becoming more consistent with the market data from the futures term structure. The three-factor model is presented in a recent article by Schwartz (1997a, pp.929-931), allowing the interest rate to be the third stochastic factor, also modeled as mean-reverting. The three stochastic processes are correlated, and a complex empirical job was performed (using Kalman filter) to estimate several parameters of these processes. 

Another important class of models allows the long-term equilibrium price level to be stochastic, presented in Pilipovic (1998), in Baker et al (1998, pp.134-135), and in Schwartz & Smith (1997). The last two papers argue that this model is equivalent to the two-factor stochastic convenience yield model. The model has economic logic because it is likely that the equilibrium level changes with the evolution of variables like the marginal cost for price-takers producers, the correlation of forces between OPEC and non-OPEC, new environmental regulations, new technologies, etc. The equilibrium price is likely to be positively correlated with spot prices in that model. In our model, this equilibrium price is assumed constant
. 

3 THE TIMING OF INVESTMENT AND THE OPTIMIZATION PROBLEM 

Let the instant t = T1 be the primary (or the first) expiration of the concession option. At this time the owner has three alternatives: to develop the field immediately, to pay a fee and/or additional exploratory investment to extend the maturity of the option (waiting for better conditions to invest), or to give up the concession, returning the tract to the National Agency. So, in addition to the classic option model (exercise the option or give-up) the firm has the decision to buy another option by paying a further fee. Let the instant t = T2 be the second and definitive expiration of the concession option. At this time the firm will choose the maximum between NPV and zero. This second expiration is like the classic option case. We consider that the operating project value W(P), that is, the project value after the investment, can be conveniently given by the following equation:

W(P) = B . V(P) = B. q P                                                     (2)

Where B is the quantity of barrels of oil in the ground (the volume of the petroleum reserve) and V is the market value of one barrel of reserve. We assume that this value is proportional to oil prices, which has been used as an assumption in real options models
. Consequently, V follows the same stochastic process of P. The proportion factor q is named economic quality of a developed reserve
, because the higher q implies higher market value for the barrel of oil in the ground (higher expected operational profit in present value from this underlying asset). 

The value of q is assumed constant and independent of the price, which could be viewed as one critical assumption for “pure reversion thinking”. But we consider that the observed high positive correlation between V and P
 and the value of q itself can be estimated using the expected oil prices trend from a mean-reverting model. The alternative is the use of futures market information (reducing the bias) as in Schwartz (1997a, eqs.18 or 30). In addition, due to the effect of depletion and discounting, the operating cash flows from the first 5 years have higher importance in the reserve value than distant cash flows. 

The results of Schwartz (1997a, p.971) give us another important argument, using very different stochastic models that are driven heavily on futures markets insights (the two and three-factor models mentioned before). These models imply an underlying project value that is linear with the spot price (Schwartz, 1997a, Fig.13), the inclination of his two or three factor NPV is exactly our economic quality q, and hence can be reproduced with our equation (2).  This contrasts with the predictability of the “pure reversion model”, which undervalues the project in a high spot price scenario and overvalues the project in the low price case. In practice, the simplification of q constant corrects some bias from “pure reversion”
. 

If we consider the extension of our stochastic process for the time horizon of the operating cash flows (that is, after the exercise of the development option), it would be necessary to consider additional features. For a more complete model it could be important to allow for the operational options (expansion or speed up, temporary halt, abandonment) and, perhaps more relevant, improving our stochastic process by allowing the long run equilibrium price to be stochastic instead of constant. These upgrade features are left to a further work, but based in the above reasons, we think that our error is not so important to justify going deeper at present. For example, in the high price case by taking account of the option to speed up production (with additional wells or early production systems)
, we get some offsetting effect over the expected reduction in V due to the expected price reversion. In addition, managers periodically can revise the value of q to be used in equation (2).

We are going to work with unitary values (of course, it is also possible to work with total values) or per-barrel values, then we are using NPV to express net present value per barrel, so:

NPV  =  V(P)  D  =  q P  D                                                 (3)

Where D is the development investment per barrel of reserve. 

Even being non-stochastic in our model, the investment value D in the first period (0-T1) can be different from the second period (T1T2) if we consider some benefit derived from this extension cost. For example, suppose that part of the extension fee (K) is an additional exploratory well. If this well could be used as a development well (as producer or as water injector), the extension investment can be reduced by a certain quantity due to this well use
. So we use D1 for the investment (per barrel) until the first expiration and D2 for the investment in the extension period (D1 ³ D2). If the additional exploratory well is a good investment independently of the extension benefit, is possible to consider the traditional option model (instead of extendible options) with a single maturity at T2 (because the additional exploratory cost will be undertaken anyway)
. 

It is necessary to derive both the value of the concession (the value of the option to invest) F(P, t), and the optimal decision rule (the thresholds). The decisions are to develop, or to wait, or to extend the option, or even to give up. The solution procedure can be viewed as a maximization problem under uncertainty. We use the Bellman-dynamic programming
 framework (see Dixit & Pindyck, 1994, chapter 4) to solve the stochastic optimal control problem. We want to maximize the value of the concession, the option F(P, t), seeking the instant when the price reaches a level P* (the threshold) in which one type of action is optimal (investment or pay to extension). The Bellman equations are: 
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               (5)
Where  is an exogenous risk-adjusted discount rate, not necessarily a CAPM
 like risk-adjusted discount rate for the underlying asset, which needs complete market. In case of incomplete markets, the risk-adjusted discount rate can be: (a) "market-estimative/proxy"; (b) by choosing a risk-premium (hence getting the discount rate), specifying a utility function for the investor; (c) simply choosing an arbitrary exogenous value. In the complete markets case it is possible to use “risk-neutral” valuation, by using a risk-free discount rate instead of , but it is necessary to change the drift of the stochastic process
. The risk-neutral approach relies in the absence of arbitrage opportunities or dynamically complete markets. 

Let us consider a more general assumption in the model: the jump-risk is systematic (correlated with the market portfolio) so it is not possible to build a riskless portfolio
. The market is not complete for this model with non-diversified jump risk, and we simply choose an exogenous discount rate. The "more rigorous" alternative for incomplete market models adopt a more restrictive assumption, using single-agent optimality framework and/or detailed equilibrium description, as performed in Naik & Lee (1990) for jumps in the market portfolio itself. Bates (1991) uses a risk-neutral approach for jump-diffusion with systematic risk, but via restrictions on preferences. These more complex approaches need to specify the investor utility. In oil companies there are hundreds of thousands of stockholders, with different levels of wealth and so with different utilities. So, a more complex approach trying to specify utility has a practical disadvantage, without being much more rigorous than the adopted dynamic programming framework, as Dixit & Pindyck (1994), using an exogenous (e.g. corporate discount rate, capital cost) or a “market-estimated/proxy” discount rate , using the futures market (see next section).  

We are interested in finding out the optimal path P1*(t ( T1), PE(T1) and P2*(T1 < t (T2), as well as the value of concession F(P, t) in each of these periods. Using the Bellman equation and Itô’s Lemma, it is possible to build the following partial differential-difference equation (PDE):

  ½ 2 P2 FPP + {(
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 P) –  E[ – 1]} P FP + Ft +  E[F(P , t) – F(P, t)] =  F                       (6)
With the following boundary conditions:

F(0, t) = 0
Absorbing barrier at P = 0
(7)

F1(P, T1) = max [V(P)  D1, F2(P, T1) – K, 0]
First expiration (T1) optimal 
condition (include extension feature)
(8)

Fi (P*, t) = V(P*) – D i ,         i =1, 2
Value matching at P* (for  both  periods)
(9)

F2 (P, T2) = max [V(P)  D2, 0]
Second expiration (T2) optimal condition
(10)

FP (P*, t) = VP(P*) =  q
Smooth pasting condition (both periods)
(11)

Equation (6) is a PDE of parabolic type and is solved using the numerical method of finite differences in the explicit form (see Appendix A). The parameters estimation is discussed in the section 4.1 and in Appendix B. A C++ program with an interactive interface (see Appendix C) was developed to solve this model and to perform the comparative statics analysis.

The boundary conditions (equations 7 to 11) are typical for American call options with extendible maturities. Equations (7) and (10) are standard for call options, whereas (9) and (11) address the early exercise feature of American options. At the first expiration T1, the second condition (8) presents the extendible feature condition, and means to choose between the options: to develop, to extend and to give up (respectively in the max. parenthesis). The lowest price at T1 that we choose to extend the option paying K is the extension threshold PE. The last equation (11), known as “smooth pasting condition” (or "high-contact"), is equivalent to the optimum exercise condition, so alternatively the earlier exercise test can be performed (the maximum between the lived option and the payoff  V – D). 

Figure 3 shows the extendible option at the first expiration moment (t = T1) identifying the three possible ranges of petroleum prices associated with different decisions (give up, extend or develop now) at the first expiration. The threshold values are also displayed in the chart. This graph is close to the traditional option payoff chart, except for the region between 11.9 and 19.7 US$/bbl, where the optimal action is to extend the option (see the curve with option shape for the interval where it is optimal to extend the option). This graph is typical for the geometric Brownian motion (GBM), and the shape is similar to that presented in the mentioned paper by Longstaff (1990, Fig.1, p.939). For the jump-diffusion case we will get a similar chart, with some difference in the shape of the option curve.
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Figure 3  Extendible option at the first expiration (for the Brownian motion case)
4  NUMERICAL SIMULATIONS 

4.1  Base Case: The Parameters 

Table 1 (see below) shows the values for the parameters used in the base case. Some values were estimated using available data about oil prices and/or using average value available in the related literature. This is the case of the volatility, long-run average oil price, reversion speed, jump size and jump frequency. Others were assumed as representative values for offshore oilfields, such as the investment at both expirations, the cost to extend the option and the economic quality of the reserves. 

The assumed times to expiration consider an average international practice
. The investment cost (per-barrel), the current spot oil prices, and the economic quality of the reserve, are set so that in the base case the NPV of the project is zero. The extension cost of US$ 0.3/bbl means US$ 30 million for a 100 million-barrel reserve, which is a representative cost of two deepwater exploratory wells. The economic quality of the developed reserve q of 33% (“one-third” rule of thumb) is just an average value from the literature. We performed several simplified empirical jobs to estimate the parameters for the jump-reversion process using market data from the Brent oil prices time series. Part of these estimation jobs (including a Bayesian approach) is summarized in Appendix B. A comparison of this jump-reversion process base case with the popular geometric Brownian motion is presented in section 4.3. 

For the reversion speed comparison with the literature is better to think using the concept of half-life value. Half-life of the oil price process indicates the slowness to revert. Half-life (H) is the time that is expected for the oil price to reach the intermediate value between the current price and the long-run average price. We estimate a half-life between one to two years
. Although some values from the literature are higher than ours (for example: Pindyck, 1999, p.7), the values that Bessembinder et al (1995, pp.373-374) found in the futures market (data from March 1983 to December 1991) are very close to ours. Extrapolating the values from their Table IV, we find an implicit half-life of 1.1 years. Bradley (1998, p.59) also finds a half-life inside our range (1.39 years). Anyway, sensitivity analyses for the parameters were performed, including the reversion speed case, and can be supplied by the authors upon request. 

Table 1 
 
Parameters from the Base Case for Jump+Mean-Reverting Model
Parameter 
Notation
Base Case Value

Volatility of the Diffusion Process (% p.a.)

22

Exogenous Discount Rate (% p.a.)

10

Reversion Speed (($/bbl)1.year1)

0.03

Annual Frequency of Jumps (per annum)

0.15

Economic Quality of Developed Reserve (%)
q
33.33

Long-Run Average Oil Price (US$/bbl)

[image: image11.wmf]P


20

Average Jump-Up (%)
u
100

Standard Deviation of the Jump-Up (%)
su
30

Average Jump-Down (%)
d
 50 

Standard Deviation of the Jump-Down (%)
sd
15

First Expiration (years)
T1
5

Second Expiration (years)
T2
8

Investment up to T1 (US$/bbl)
D1
5

Investment after T1 until T2 (US$/bbl)
D2
4.85

Cost to Extend the Option (US$/bbl)
K
0.3

The long run equilibrium price is hard to obtain. One reference is a long run OPEC price goal of about US$ 22/bbl, but the long run marginal cost from non-OPEC countries, under US$ 19/bbl, could be used as lower bound. The increasing non-OPEC production has lately been offset by the rising costs experienced by oil companies going to deepwater and ultra-deepwater to find new reserves. Perhaps the best value is in between the OPEC goal and the non-OPEC marginal cost
. Baker et al (1998, p.129) estimated the long run oil price at $18.86/bbl (in 1995 dollars) and used (pp.138-140) $20/bbl as the initial long run level in their model
. In the same article, one graph (p.127) of term structure of futures prices could suggest a long-run price between $18-21/bbl. Ross (1999, p.172) found $20.44/bbl for NYMEX crude (~$19/bbl for Brent) using data from 1995-1997. We adopt $20/bbl (in 1999 dollars) for Brent crude. This value is also adopted in Bradley (1998, pp.59-61) and shown in Cortazar & Schwartz (1996, Figure 4). Our[image: image12.wmf]P

value is constant along the option term.

We assume in the base case an exogenous discount rate  of 10% p.a. (which is also the official discount rate to report the present value of proven oil reserves to stock market investors). In reality, with our general assumption of systematic jump risk, it is not possible to use the non-arbitrage way to build a riskless portfolio because market information is not sufficient to spawn all the risk. In this case there is no theory for setting the “correct” discount rate (CAPM doesn’t hold), unless we make restrictive assumptions about investors’ utility functions (without guarantee of more reliable results).

One practical “market-way” to estimate  is taking the net convenience yield ( time series (calculated by using futures market data from longest maturity contract with liquidity)
, together with spot prices series, estimating  by using the equation: (t) (t)(
[image: image13.wmf]P

– P(t)). Here  is just the difference between the discount rate (total required return) and the expected capital gain E(dP/P), like a dividend. The parameter  is endogenous in our model and, from a market point of view, is used in the sense of Schwartz’s (1997b, p.2) description: “In practice, the convenience yield is the adjustment needed in the drift of the spot price process to properly price existing futures prices”. High oil prices P in general mean high convenience yield  (positive correlation)
, and for very low P the net convenience yield can even be negative. There is an offsetting effect in the equation (even though not perfect), so we claim as reasonable the approximation of  constant. As compensation, we do not need to assume constant interest rate (because it does not appear in our model) or constant convenience yield (this implicitly changes with P)
. The time series (P, r, ) generate the  time series. In this way, the value of  depends of the assumed values for 
[image: image14.wmf]P

 and . Using 10-year oil futures data (from July/89 to June/99) and 12-month T-Bond interest rates, we found the time series for both  and , and the standard deviation of  was about the half of the , confirming our intuition of more stability for . The simple regression P x  permits us to estimate “market” values for  and . We found 9.3% and = 0.03 (used in the base case). We get the same value  9.3% p.a. at the equilibrium level $20/bbl (for P = [image: image15.wmf]P

=  using the equation of regression.

The alternative way, using the same market data, is to estimate the return  on this commodity by running a cointegrating regression of the temporal series (P, ) or by estimating the risk premium running a simple regression of futures and spot prices, see Pindyck (1993, pp.514-517)
.

4.2  Base Case Results and Sensitivity Analysis 
Figure 4 shows the option value for the base case at the current data (t = 0, upper/thinner line) and the payoff line (bottom line) at the first expiration (T1). The option curve shape is different than the Brownian motion case (Fig.2), here the option graph exhibits a typical shape for mean-reverting process. See the option curve smooth pasting on the payoff line: the tangency point is the threshold for immediate investment. The main thresholds of the base case are showed in the chart.
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Figure 4  Extendible option at t = 0 and at the first expiration (mean-reverting + jump)
Figure 5 shows the options value at the first expiration (payoff, bottom line) and the option curve (upper line) just after the first expiration, for a case slightly different than the base-case (with higher fee to extension, K= 0.5 $/bbl, in order to highlight the effect). Note that the payoff and the option curve are parallel in the interval that is optimal to extend the option and also that the distance between the parallel lines is K, the fee to be paid in order to extend the option.
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Figure 5   The options value at the first and just after the first expirations (for K = 0.5)
Figure 6 displays the threshold lines for both terms of the option. On or above the threshold lines, immediate investment is optimal. See also the discussion of Figure 8 for more details.
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Figure 6   The threshold lines for jump-diffusion process (base case)
Several sensitivity analyses were performed for each parameter of this process. Some parameters show major impact on both option value and thresholds. For example, the economic quality of the developed reserves (q) has a large impact, mainly in the option value: from q = 0.2 to 0.45, the option F(P=15) rises from $0.46 to $4.00/bbl and the threshold P*(t=0) drops from $30.9 to $24.4/bbl. At the bottom of the parameters list, the standard deviations of the jump size (both up and down) simulations shown a minor impact on the results.

The time to expiration policy debate of the Brazilian petroleum sector motivates the following analysis. Table 2 shows that an increase in the time to expiration has a greater impact over the option value than over the threshold. The table indicates that by raising the total expiration (T1+T2) from 5 years to 8 years, the option value increases nearly 20%, whereas the threshold value increases less than 4%. So, 8 years instead of 5 years attracts a higher bid bonus (~ proportional to option value) without delaying (looking at the thresholds) good investment projects too much. In the base case, the option value reaches US$ 2.178/bbl, which is significantly higher than NPV value (NPV is zero for P = $15/bbl). For a 100 million-barrel oilfield, this means an option value of US$ 217.8 million.

Table 2  
Sensitivity of the Option and Threshold with Time to Expiration 

T1 (years)
T1 + T2 (years)
F(P=15) ($/bbl)
% in F
P*(0) ($/bbl)
% in P*

2
3
1.440
-
24.1
-

3
5
1.828
26.9
25.1
4.1

5
8 (base case)
2.178
19.2
25.9
3.2

6
10
2.314
6.2
26.2
1.2

8
12
2.417
4.5
26.4
0.8

Moreover, higher time to expiration presents other benefits (so higher bonus-bid) that have not been considered in this paper. For example: (a) “Bayesian” gain of sequential exploratory investment (rather parallel) using information gathered for correlated prospects; (b) higher incentive for each firm to bid on several tracts, because a higher time permits making optimal sequential investment (according to the “auction theory”, more bidders per tract means higher expected bonus value); (c) facilitated optimal resources allocation, capturing business opportunities that are available on specific timing like seasonal rates of special service ships; and (d) information revelation from the exploratory work in the basin (see Dias, 1997, p.143, or Grenadier, 1999) reducing technical uncertainty and bringing free information such as on new geologic plays, which leverage the tract value and so the winning bid, if there is time to wait and to use the information. 

Figure 7 shows the sensitivity of the thresholds with the Poisson arrival factor . For higher jump frequency the threshold level for the immediate investment is higher, which has economic logic because the investor is less willing to invest due to the risk of jump-down. However, the threshold for extension decreases, because jump-up increases the possibility of a not good project to be transformed into a good one. Hence, in most cases firms should pay a small cost to extend the option rights.
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Figure 7   Thresholds and the jumps arrival frequency 
The general results from comparative statics were: option values increased for higher reversion speed, lower discount rate
, higher volatility, higher jump arrival, higher jump-up mean, lower extension cost, higher long-run mean, higher economic quality of the reserve, and higher expiration time. 

4.3  Comparing Geometric Brownian with Mean-Reversion Plus Jumps

Geometric Brownian Motion (GBM), also known as the drifted random walk model, is the most popular stochastic process and is generally a very good one in financial economics, although far from perfect, mainly for commodities. The GBM model for oil prices is shown below.

dP  =   P dt +  P dz                                                                             (12) 
where    and  dz is the Wiener increment.   

The parameters for GBM base case are r =  = 5%,  = 23%. The comparison of the GBM with our more rigorous jump-diffusion model (equation 1) for oil prices is summarized in the table below.

Table 3  
Option Values at P = US$ 18.3/bbl 
Jump + Mean Reversion Process:  F(P = 18.3 $/bbl, t = 0)

Base
No-Jump 
( = 0) 
No volatility 
 = 0%
 = 5%
No reversion 
 = 0
 = 23%,  = 0 and = 0

2.4768
1.8979
2.0225
2.2592
1.8237
1.4162

Geometric Brownian Motion:  F(P = 18.3 $/bbl, t = 0)

Base (r =  = 5%)
r = 10%   and   = 5%
r = 10%   and   = 10%

1.5739
2.0831
1.4162

The table was built with a convenience yield  of 5% for both processes. In the case of GBM,  is both constant and an input parameter of the model. In the case of Jump + Mean-Reversion,  is not constant, is not a direct input parameter (it is implicit, endogenous of the model) and depends of the price level: (P). In order to compare on the same basis, let us choose a petroleum price to compare options so that convenience yield  is the same and equal to 5%. This price is $18.3 US/bbl because it implies a convenience yield of 5% for our jump-mean-reverting process, as shown using the equation for :

(
[image: image20.wmf]P

– P) ( 0.05 = 0.1 – 0.03(20 – P) ( P = 18.3 $/bbl  
Comparing jump + mean-reversion and GBM (Table 3), jump + mean-reversion in general presents higher option values. The GBM has higher option value only for the higher interest rate case (r = 10%, the same value of  in jump-diffusion setting) and when comparing with no jumps ( = 0), no volatility ( = 0) or no reversion ( = 0) cases. The option value is closer to GBM in the low-uncertainty case (5%) than for the reversion process. However, the role of interest rate r in the GBM and the role of the discount rate  in the jump-diffusion are very different. The option value increases with r in the GBM and decreases with  in the jump-diffusion (see last endnote). In the GBM, r is independent of , so the only effect is to increase the waiting benefit, but in the jump-diffusion model  is not independent of . In other words, for the same drift ([image: image21.wmf]P

 P), a change in the value of , implicitly means a change in the value of . For this reason, if we use a lower value for  (e.g.  = 5% = r), we get a higher option value (2.5814, not shown in the table), and the option values from the jump-diffusion process become still higher than GBM. For  = 0, implying , we can compare the case of GBM with r =  and jump-diffusion for no reversion, no jump and with the same volatility ( = 0,  = 0,  = 23%). In this case, as expected, the values are the same, equal to 1.4162 (see Table 3)
. 

4.4  Comparing Dynamic Programming and Contingent Claims

We are using dynamic programming instead contingent claims mainly because the jump risk was considered systematic (correlated with the market portfolio). Suppose now that the jump risk is not systematic, so that a riskless portfolio can be built and the contingent claims method holds. The PDE is:

½ 2 P2 FPP + {r –  + (
[image: image22.wmf]P

 P) –  E[ – 1]}P FP + Ft +  E[F(P , t) – F(P, t)] = r F            (13)
Comparing with the dynamic programming case (equation 6), the right term F is replaced by rF and the second term {([image: image23.wmf]P

 P) –  E[ – 1]}P FP  is replaced by {r –  + ([image: image24.wmf]P

 P) –  E[ – 1]}P FP. Even for contingent claims we need the discount rate  (and even discounting with the interest rate r) due the dividend yield  for the mean-reverting process, which is not constant as in the GBM, it is a function of oil price   ([image: image25.wmf]P

 P). See also footnote 24 for a discussion. 

Assume the contingent claims base case with  = 10% p.a. and r = 5% p.a. Table 4 shows option values (F) and thresholds (P*, PE) comparing optimization methods (contingent claims versus dynamic programming) and stochastic processes (jump-reversion versus GBM). Our simulation results indicate small differences in adopting contingent claims or dynamic programming. However, the stochastic process matters, with jump-reversion presenting higher option values than GBM. Threshold values indicate higher hysteresis for jump-reversion than for GBM. 

Table 4  
Comparing Base Case Real Options Methods and Stochastic Processes ($/bbl)

F(P = 15)
F(P = 18.3)
P*(t = 0)
P*(t = T1)
PE(t = T1)

Jump-Reversion Dynamic Programming
2.17849
2.4768
25.9
22.2
4.7

Jump-Reversion Contingent Claims
2.1653
2.4628
25.6
21.6
5.2

Geometric Brownian Motion (GBM)
0.908319
1.5739
27.5
19.7
11.9

For a discussion of the uses and equivalence of these optimization methods in real options, dynamic programming versus risk neutral/contingent claims approach, see Dixit & Pindyck (1994, chapter 4). For an extension of risk neutral valuation to nontraded assets, see Trigeorgis (1996, pgs.101-103).

Figure 8 shows both thresholds, for the jump-diffusion process and for the GBM. The threshold curve is smoother for GBM than for jump-diffusion process near expirations. The reason is the effect of the dividend-yield . In case of GBM,  is constant and positive, whereas for jump-diffusion process,  is not constant (it depends on oil prices P). In the jump-diffusion process,  is positive for higher oil prices and negative for lower prices. A well known property from American call options is that a necessary condition for the optimal early exercise is  > 0. So, early exercise is possible only if P is higher than $16.7/bbl (in the base-case) and this explains the discontinuity of the threshold curve at the expiration
. 
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Figure 8   Thresholds comparison: jump-diffusion x geometric Brownian motion
The other important observation is that the threshold to undertake the project in the beginning of the term is higher for the GBM (although in general the option values are lower). This is coherent with the results of Schwartz (1997a, p.972)
 when comparing GBM with their two and three-factor models even being very different from our jump-diffusion model, but that systematically produce results qualitatively close to our model when he compares these models with the GBM.

Figure 9 presents the thresholds curves for the first period (at t = 0 and t = T1) in function of the volatility. Higher volatility favors waiting and extension (higher spread between P* and PE).
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Figure 9  Effect of the volatility on the jump-reversion thresholds
5  CONCLUSIONS 

This paper develops a model for extendible options embedded in the petroleum offshore E&P contracts that occur in some countries. The model incorporates the possibility of the extension cost (e.g. exploratory wells) to be used partially as a benefit (to reduce the development cost).

The numerical results suggest a higher option value (and so higher expected bonus bid) to a higher time to expiration without a significant additional delay of investment in good projects
. Moreover, there are other benefits (so even higher bonus-bid) from higher time to expiration that have not been quantified in this paper, such as information revelation and portfolio optimization.

The stochastic model of jump + mean-reversion for oil prices has more economic logic than previous models used in real options literature. It considers that normal news causes continuous small mean-reverting adjustment in oil prices, whereas abnormal news causes abnormal movements in these prices (jumps). A future improvement is to allow for stochastic long run equilibrium price (mainly for longer terms), calculating the initial equilibrium price (of the industry players) using Game Theory.

The comparison of this more rigorous model with the more popular Geometric Brownian Motion indicated a higher option value for the jump-diffusion case. Hence, a higher expected bid in the lease-sale process is a consequence of using this more rigorous model. Other good models from the literature, such as Gibson & Schwartz (1990) and Schwartz (1997a) two and three-factor, that rely more heavily on the futures markets, despite being very different, present results qualitatively very similar with ours.

Several extensions are possible for our main model. For example: (a) allowing the equilibrium price level to be stochastic; (b) using a correlated stochastic process for the operational cost, instead of the adopted linear function V(P); (c) incorporating the technical uncertainty and exploratory revelation; (d) considering other options like phased development (extendible call on a call) and/or abandonment (extendible call on a put); and (e) portfolio planning, quantifying the expected first hitting time for a project that currently is optimal to wait, in order to estimate when the investment is expected to start. 

Appendix A  
Explicit Finite Difference Numerical Solution 

To solve the partial differential equation (PDE) of parabolic type (Eq.6) we use the finite difference method (FDM) in the explicit form. It consists of transforming the continuous domain of P and t state variables by a network or mesh of discrete points (grid). The PDE is converted into a set of finite difference equations, which can be solved using the appropriate boundary conditions (including the boundary conditions at t = T1 and t = T2). The solution is reached by proceeding backward through small intervals Ps until we find the optimal path P*(t) to every t. 

The use of the finite difference method for jump-diffusion processes has appeared before, at least in Bates (1991), and is similar to the idea adopted by Ames (1993) of transforming a recombining binomial model to a recombining multinomial model excepting that we do not use lattice methods. The FDM C++ program for pricing derivatives with the underling asset following a jump diffusion process was exhaustively tested with particular cases of jump-diffusion and mean-reversion alone that we found in the literature. Suppose F(P,t) is the real option value as function of oil price (P) and time until maturity (t). We assume the following discretization:


F(P,t) ( F( iP, jt ) ( Fi,j          , where 0 ( i ( m  e 0 ( j ( n1 or n2 with n1,2 = T1,2 / (t.                  (A1)
The partial derivatives are approximated by the differences:

  FPP ( [ F i+1.j - 2Fi,j + Fi-1,j ] / (P)2    ;   FP ( [ F i+1.j - Fi-1,j ] / 2P   ;    Ft ( [ F i.j+1 - Fi,j  ] / t                          

We use the “central-difference” approximation for the P variable and the “forward-difference” for the t variable. Applying these approximations to the PDE and the boundary conditions, we get the following difference equation:
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Where:  
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See Ames (1977, p.65) for the theorem to ensure the convergence of explicit FDM, which points out that the discrete steps (P and t) must be chosen so that all the coefficients (p+ , p0 , p-) from equation (A2) be positive for any value inside the grid. Therefore the convergence of the explicit FDM determines the choice of P and t.  The boundary conditions are also approximated as mentioned before. 

1. The last term in equation (A2) represents the jump term contribution to the real option value. Jumps can occur with probability pjump, and the expectation term is equivalent to a numerical integration of the options value over the new oil prices after the jump occurrence (i.P.). To solve the numerical integration we also perform a discretization over the jump size distribution (), which is divided in small partitions. The central value of each partition is associate to the corresponding probability from the respective partition. Straightforward the higher the number of the partitions the better the accuracy of the result. This numerical procedure can handle any kind of jump size distribution. Approximation or interpolation methods have to be used to better approximate the new oil price after a jump (i.P.) to some point (i.P) inside the grid. 

2. More about the FDM can be found in Brennan & Schwartz (1978), Ames (1977) or Smith (1971).

Appendix B 
Parameters Estimate

The model of oil prices reversion known as Geometric Ornstein-Uhlenbeck
 is used in Dixit & Pindyck (1994) and in Metcalf & Hasset (1995), is similar with ours except the jumps term:
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                                                                                                                           (B1)
This format is not so useful for parameters estimation purposes, and in order to ease this job we use a mean-reversion model for the logarithm of oil prices (x = lnP). In this case we have: 

dx = * (
[image: image35.wmf]x

 x) dt + * dz + jump-terms                                                                                                 (B2)

In our estimation job we will put out the sample data referring to jumps, in order to estimate only the mean-reverting parameters (
[image: image36.wmf]x

, , . Excluding the jumps, the discrete time version of the above equation (see Dixit & Pindyck´s book, pp.76-77) is a first order autoregressive process, and we can estimate the parameters (
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, , by running the regression xt – xt – 1 = a + b xt – 1 + t. 


[image: image38.wmf]x

 =  a/b ;  * ln(1 + b) ; and   
[image: image39.wmf]1

 

 

2

b)

(1

b)

ln(1

-

+

+

                                                           (B3, B4, B5)

Where  is the standard error of the regression. We need to get the relation between the parameters from the model x = lnP with the parameters of the stochastic equation that we are using (for P instead x). Consider the following format for our model:
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Where dq’ = 1 with probability .dt and zero otherwise. The last two terms are the compensated-Poisson jump components (k = E[ – 1]) . Using the Itô´s Lemma for jump-diffusion case (see Dixit & Pindyck, 1994, p.86) for the function x = lnP (so that (x/(t = 0; (x/(P = 1/P; (2x/(P2 =  1/P2) we get after some simplification:

 dx = d(lnP) = 
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 dt +  dz + ln (dq’ –  dt)                                                      (B7)
Comparing with the simple equation: dx = *(
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 x) dt + * dz + jump-terms; we find the parameters:

*t =  
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 ; and   * =                                                                        (B8, B9, B10)
From these equations we get the values of [image: image46.wmf]P

and. We are ready to start the estimation. 

The oil price
 monthly time series suggests that the price of oil is subject to permanent and transitory instabilities. The model instability can be considered in two ways. One, simpler, admits that there was a structural change from a certain moment, say the middle of the 70s, which would recommend discarding the older periods. This view is particularly arbitrary due to the fact that it depends on the cut point and the assessment that only a model change occurred. Alternatively, the assessment of a structural change can be incorporated into the model explaining the hypothesis that the parameters follow a random walk.

Even though this last approach is more elegant, it implies the incorporation of non-linear elements to the model, and the use of more complex estimation models. Two models will be considered for the oil price Pt. Model 1 refers to the Geometric Brownian Motion  (GBM) and Model 2 to the Mean Reversion process. In both models the parameters () control the adaptability degree of estimations of the pair (a, b), introduce non-linearity and do not allow the finding of analytical forms for its estimates, requiring the use of numerical methods for it.

Model 1: Geometric Brownian Motion

pt = at + et    , where (dP/P)t = pt    and      et ~ N(0, st)                                                                                 (B11)
at = at-1+ e1t                e1t ~ N(0, (st)                                                                                                                  (B12)
Model 2 : Mean Reversion Process:

Ln(Pt) = at + (1+b t ) Ln(Pt-1) + et   ,       et ~ N(0,st)  ; at = at-1+ e1t    ;                                                                 (B13)
e1t ~ N(0, (st)        ;            bt = bt-1+ e2t   ;                 e2t ~ N(0, (st)

The change in the instability standard of prices along the sample will be considered using an adaptive model for estimation of volatility. In this specification, the choice of the parameter ((), which controls the adaptability degree of volatility, is arbitrary. The variance equation st follows (B12), with (B13) as solution:

st = (st-1 + (1  () e2t-1                                                                                                                                 (B14)
st = (i(i e2t-i  / (1-()                                                                                                                                    (B15)
The characteristics of prices suggest that volatility has had the same instability behavior since 1971, and hence we consider the interval January 1971 to October 1999 as the relevant one. For these values we chose (( = 0.95) to perform the estimate. We considered as belonging to the sample the numbers (dP/P) that were in the interval [020, 0.20]. All the others were considered a consequence of the jump. The models (1) and (2) were estimated using the method MCMC (Markov Chain Monte Carlo)  see West and Harrison (1997) – and obtained the mode and the interval of maximum density a posteriori (IMDP) for 65% level. 

A unit root test was performed to Model 2 with adaptive parameters, and the mean-reversion hypothesis was not rejected. The estimated parameters for each model are shown in table below as well as the respective T-statistics, and the parameters (using equations B3, B4, B5, B8, B9 and B10). The first two lines were estimated using the adaptive model described above. The third line (Model 2A) uses a similar but non-adaptive model (non-learning parameters). The last one (Model 2B) was obtained using the classical regression (described in Dixit & Pindyck, 1994, pp.76-77). 



a 
(monthly)
T(a)
1 + b
(monthly)
T(1 + b)
Volatility 
(% p.a.)
 
($/bbl)1.year1
[image: image47.wmf]P

 ($/bbl)

Model 1
 0.63
0.52
-
-
23.15
-
-

Model 2
0.1831
1.787
0.934
25.6
19.51
0.12
18.53

Model 2A
0.0247
1.048
0.9849
134.4
14.6
0.03
15.57

Model 2B
0.04557
-
0.98447
-
32.2
0.03
19.87

The volatility adopted for the mean-reverting case was 22% p.a., which was estimated using other discretization and period numbers. Smit (1997) used 22% p.a. as base-case based on Brent oil price time series in 1992 and 1993 (a non-jumps period). He got higher volatility when including periods with jumps. 

Appendix C  
The Software Interface

The software interface was built using Borland C++ Builder. The main screen is shown in the figure below. The interface has three stochastic processes available to choose to perform the calculus for the extendible option problem: (a) mean-reversion + jump, with the random jump using two truncated-normal distribution (2 Normal); (b) mean-reversion + jump, with the random jump using lognormal distribution
; (c) geometric Brownian motion. The parameters from the base case for the first stochastic process are shown in the figure (including the grid density parameters for the finite difference method: P, t and P maximum). There are other interactive windows in the software, integrating the user-friendly interface.
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Extendible Options Model for Petroleum Rights
Oil Prices with Mean-Reverting + Jump Process (2 Normals)

Stochastic Processes
(r: [Mean-Reverfing+Jump (2 Normals) ¢ Mean-Reverting+Jump (LogNormal) ¢ Geometric Brownian Motion

Tnvestment (D1, US$/bbl) 5 First Expiration (T1, years) J
Tnvestment (D2, USS/bbl) 4.85 Second Expiration (T2, years) &
Petroleum Price (USS/bbl) 15 Grid Parameters AP 0.1
Cost to Extend the Option ($/bbl) 0.3 At 0.0001
Economic Quality of Developed Reserve 0.333333 P Maximum (US$/bbl) 45
Long-Run Mean Price (US$/bbl) 20 Annual Frequency for Jump 0.15
Half-Life of Oil Price (years) 1.1552453  Volatility of Diffusion Process (p.a.) 0.22
Average Jump-Up Size (> 0) 1 Standard Deviation of the Jump-Up 0.3
Average Jump-Down Size (< 0) -0.5 Standard Deviation of the Jump-Down 0.15

Exogenous Discount Rate (p.a.) 0.1

Parameters for Mean-Reverting + Jump Process (2N)
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� Version prepared to forthcoming book on real options by Oxford University Press, edited by Lenos Trigeorgis. Earlier versions were presented at: the 3rd Annual International Conference on Real Options, Wassenaar/Leiden, The Netherlands, June 6-8, 1999; the "XX Encontro Brasileiro de Econometria", Vitória, ES, Brazil, December 1998, and the "Workshop on Real Options", Stavanger, Norway, May 1998.  


� The fiscal regime of Brazilian E&P sector is the concession contract (lease), in which firms offer a bonus to the National Petroleum Agency (ANP) in first-price sealed bidding process. The model presented here is not Brazilian specific, but the underlying motivation was the Brazilian application.  


� For a discussion on extendible maturities options, see Longstaff (1990) and Briys et al (1998, chapter 16). The payoff of an extendible option is the maximum of two risky payoffs: the payoff from a standard call option and a compound option (call on a call) less the cost to get it. So, extendible options are more general than compound options.


� See Dias (1997) for a simple model integrating three kinds of uncertainties (technical, economic and strategic) using a decision-tree plus a game-tree for the exploratory phase, and a continuous-time model for the development phase.


� See Dixit & Pindyck’s book (1994, Section 4, Chapter 10) for a continuous time model combining both technical and market uncertainty. Although the model is associated with nuclear industry, it can be adapted to the petroleum one.


� See for example the econometric tests of D. Pilipovic (1998, Tables 4-9, p.78, WTI petroleum). Pindyck & Rubinfeld (1991, Chapter 15) using a Dickey-Fuller unit root test, rejected the random walk hypothesis for a very long time series (more than 100 years). But they point that the oil price reversion to a long-run equilibrium level is likely to be slow.


� Brent oil, first month IPE (before 1984 were used other similar quality oil from North African, Libya and Qatar). 


� Considering only large jumps, our model is adequate for projects of exploration and production of petroleum, not for trading in commodities markets. For the latter, one jump displayed in the Figure 1 is not a single jump: with a scale of one year instead 30 years, our single jump looks like several smaller jumps interspersed with continuous process. This case (compared with the real options case) has higher jump arrival frequency , but with lower expected jump sizes.


� In real options literature, jump processes have been used to model random competitors’ arrival (see Trigeorgis, 1996, pp.273, 284-288, 328-329), and in outcomes from R&D projects (see Pennings & Lint, 1997).


� Perhaps a new large jump-up can be characterized in the year 2000, depending of the jump criterion.


� As in Merton (1976), the drift is compensated (the term  k) for the Poisson jump expected value. 


� This is reasonable in the context because our stochastic process describes the oil prices only until the exercise of the option, assuming the expected value after the exercise. For models that also describe the cash flow after the development option exercise, this improvement could be more important, mainly to consider the option to expand the production.


� See Paddock, J.L. & D. R. Siegel  & J. L. Smith (1988) and Dixit & Pindyck (1994, Chapter 12, Section 1).


� Dias presented this concept in the "Workshop on Real Options", May 1998, Stavanger, Norway (see his website).


� The main reference for the market value of reserve, published by the traditional John S. Herold since 1946 (see data and discussion in Adelman et al., 1989, mainly Table 2), shows a large positive correlation between P and V, including jumps. Examples: between 1981-85, V was in the range of $ 8-10/bbl, whereas in 1986 dropped to $5.88/bbl; for the 70s oil price shocks, jumps in V were still more pronounced. The volatility of V has been slightly lower than P.


� The Schwartz models assume that the operational costs (OC) are deterministic and independent of the commodity price P. However, for oilfields, the correlation between OC and P has been very high, as shown by the data from Adelman et al. (1989, Table 2). On the other hand, our model simplifies, assuming perfect correlation. The truth is in between. A more realistic but more complex model should allow for stochastic costs with a positive correlation with P process.


� Early Production Systems were exactly what happened to Brazil in the high-price period from the early 80s.


� In Brazil, frequently an exploratory well is used in the development project. Even if the well is not the best location for the project, the investment reduction due to the already drilled well can be a good compensation. Kemna (1993, based on her consulting for Shell) presented a model for extendible options, but did not allow for any benefit derived from the fee/additional exploratory extendible cost. She developed a more simplified model, using a European style option.


� In this case, by setting K = 0 and D1 = D2, our extendible options model collapses to the traditional options model.


� See later in this paper, a discussion of dynamic programming versus the alternative approach named contingent claims.


� Capital Asset Pricing Model, a mean-variance equilibrium model, is used to set discount rates for assets and projects.  


� Or the equivalent alternative, a probability transformation using an artificial probability (named martingale measure or risk-neutral probability) instead of the real probability process. For the mean-reversion case, see the risk-neutral drift in Dixit & Pindyck (1994, p.162) and the risk-neutral probabilities in Sick (1995, pp.676-677). In both cases the main difference (when comparing with GBM) is that the convenience yield  is not constant, is a function of P due to equation (�P). So, risk-neutral probabilities and risk-neutral drift are function of P, and a risk-adjusted discount rate appears. For mean-reversion both the drift and the risk adjusted discount rate are specified, so it is not possible to by-pass the estimation of even discounting with the risk-free discount rate. This parameter  appears just due to .  For the GBM, all that matters is the difference  =  – , and with  known and constant, it is not necessary to estimate . 


� For oil prices, it is hard to say whether or not jumps are really systematic, but in the Asian crisis of 1997 a jump-down in the economy caused an expectation of jump-down in the oil demand and its prices. Nietert (1997, p.1-4) distinguishes three types of jumps for stocks: firm-specific, industry-specific (with systematic component) and market jumps.


� The preliminary version (Feb/98) of the Brazilian concession contract provided for out 3 years plus 2 years of extension, but new guidelines in January 1999 and the first-round bidding in June 1999, established that the total time can reach 9 years. In many cases there are three periods (rather than two as in our model), with two extension options. However in several cases it is possible to collapse into a two option periods because the first period demands only seismic investment (no drilling). In addition, according to our simulations, the qualitative insights for the two period’s case are valid for three periods.  


� Range of values estimated running Monte Carlo simulations for the geometric mean-reversion process that we are using. In our model the half-life value depends of the state variable P.


� A purely statistical approach for the equilibrium price could be noisy. An alternative is to set the long-run equilibrium price using game theory, by seeking a Nash-Cournot equilibrium or even modelling a Stackelberg leader-follower duopoly. The last one was used in Vieira (2000), and he also found $20/bbl as the equilibrium long-run prices.  


� That paper uses an uncertain long run equilibrium price modelled with geometric Brownian model, with the equilibrium price growing exponentially (a small positive drift for non-renewable resource is a reasonable assumption). 


� The known formula for a commodity futures prices is F(t) = e(r ) t  P. This equation is deduced by arbitrage and assumes that  is deterministic, so it looks contradictory with our assumption of systematic jump and with our model that implies that  is as uncertain as P. But we want an implicit value for  and so for , to get a market reference for . It is only a practical “market evaluation” for the discount rate that is assumed constant in our model.


� Schwartz (1997a, p.943, Table IX) finds strong correlation between the spot price and the convenience yield (+0.915 for 259 samples and + 0.809 for other 163 samples). The correlation between spot price and interest rate (r) was slightly negative (0.0293 and –0.0057), whereas between  and r, it seems to be independent (-0.0039 and +0.0399).


� Much less realistic is the standard GBM assumption of  constant. Even the superior two-factor model of Gibson & Schwartz (1990) assumes that both the interest rate and the market price of convenience yield risk (p.967) are constant.


� The Pindyck (1993) model is based in the “fundamentals” (present value of  stream), so it is other stochastic model, but again his suggested market way to estimate  could be a good reference.


� Increasing the discount rate , decreases both the option and the threshold at t=0 because, given a fixed drift, the convenience (dividend) yield  has to adjust to the chances in  due to the relation (�P) . By increasing the convenience yield, the waiting value decreases and so do the threshold and the option values. See Dixit & Pindyck (1994, Chapter 5) for a further explanation of the mean-reversion process and sensitivity analysis for the discount rate.


� For a jump-diffusion with 5%, and also with  = 23%,  = 0,  = 0 (not shown in table), the option is again the same as the GBM base case (which has r =  = 5%), that is, 1.5739.


� At the expiration (“now-or-never”) the option is the maximum between NPV and zero. NPV is zero for P = $14.55/bbl (= threshold at expiration T2). In the threshold curve there is a gap because a minute before the expiration, a necessary condition to exist an optimal exercise is P > 16.7 (in order to get  > 0) and  is sufficiently positive to optimal earlier exercise only at around the level of $20/bbl.


� Schwartz (1997a, eq.52 and footnote 35) compares thresholds using perpetual options for the GBM and 10-year maturity for the 2 and 3 factors models. However, for the volatility used, the threshold for perpetual and 10-year maturity are very close (threshold asymptotic property for long term), permitting the comparison.


� The economist and ex-Minister Delfim Netto defended a timing policy for petroleum sector citing this conclusion (of an earlier version of our paper) to support his view (Folha de São Paulo, April 14, 1999).


� One important alternative is the arithmetic Ornstein-Uhlenbeck process, for used example in Smith & McCardle (1997). They model the logarithm of the oil prices (instead the prices themselves) as mean-reverting,  = ln(P), that is, d�dt +  dz, which is better for parameters estimation. This logarithm version of mean-reversion but including jumps, was used in the risk modeling for the equity design of the project finance of Marlim oilfield (Campos Basin, Brazil) in 1998, because the simulation advantages and the analytical solution for the variance of price process.





� Source for the series of oil prices and consumer prices index: IMF, International Financial Statistics.


� Our first version of the model, presented in Stavanger (May 1998), used the lognormal distribution for jumps (like Merton, 1976) instead the two-truncated normal distribution, so it remained in the software. 
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